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To the memory of my late friend, Austin Tribble, for exemplifying resilience

and determination. To my wife, Jill Rodriguez, whose brilliance and

intellectual curiosity have inspired me every day since the day we met.



– Carlos Rodriguez

Foreword

Large Language Models (LLMs) are poised to transform the way we interact
with technology, offering unprecedented capabilities in understanding and
generating human language. They have become essential tools in numerous
applications, from chatbots and virtual assistants to content creation and
translation services. For a subject that is extremely dynamic and complex,
Carlos has managed to distill years of expertise into a work that is both
accessible and comprehensive. This book not only demystifies the complexities
of LLMs but also provides a comprehensive guide for practitioners and
enthusiasts alike. So, it is with great pride and excitement that I pen this
foreword for my good friend and esteemed colleague, Carlos Rodriguez, whose
work on LLMs delves into the intricacies of model architecture, training
methodologies, and practical implementations, all while maintaining a clarity
that ensures readers, regardless of their background, can grasp the
fundamental principles and potential applications of LLMs. Our journey
together began only two short years ago; however, we found ourselves to be
kindred spirits in the ever-evolving world of AI. From the outset, I was struck
by Carlos’ insatiable curiosity and unyielding dedication to the field of AI. Over
numerous discussions and collaborative projects, I have witnessed firsthand the
depth of his knowledge, the rigor of his research, and the passion that fuels his
relentless pursuit of innovation. What sets Generative AI Foundations in Python

apart is Carlos’ unique ability to blend technical depth with practical insights.
Each chapter is a testament to his meticulous approach and his commitment to
bridging the gap between theoretical concepts and real-world solutions.
Interweaving real-world examples, code snippets, and practical considerations
ensures that seasoned professionals or newcomers to the field will find this
book to be an invaluable resource. In closing, I invite you to embark on this
journey with an open mind and a passion for learning. The landscape of LLMs is
vast; there is no better guide than the one you hold in your hands. May this
book inspire, educate, and ignite a passion for learning and discovery in every
reader. Enjoy the journey.

– Samira Shaikh, PhD.
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Preface

Welcome to Generative AI Foundations in Python: Discover key techniques and

navigate modern challenges in LLMs. This book offers an accessible
introduction to generative AI and large language models (LLMs), guiding the
reader from core principles to practical applications. It aims to present a
balanced approach, offering theory and hands-on examples, providing a strong
foundation for those seeking to understand and leverage generative AI in their
respective disciplines and fields.



Who this book is for

Written for data scientists, machine learning engineers, IT professionals,
educators, and students with a basic grasp of machine learning and Python, the
book meets the readers where they are, enabling them to engage fully with the
content and build their foundational knowledge of generative AI concepts.



What this book covers

Chapter 1, Understanding Generative AI: An Introduction, lays the conceptual
groundwork, broadening the reader’s fundamental understanding of what this
technology does, how it was derived, and how it can be used. It establishes how
generative models differ from classical machine learning paradigms and
elucidates how they discern complex relationships and idiosyncrasies in data to
synthesize human-like text, audio, and video.

Chapter 2, Surveying GenAI Types and Modes: An Overview of GANs, Diffusers,

and Transformers, explores the theoretical foundations and real-world
applications of these techniques in greater depth. It dissects the architectural
innovations and enhancements that improved training stability and output
quality over time, bringing us to state-of-the-art LLMs.

Chapter 3, Tracing the Foundations of Natural Language Processing and the

Impact of the Transformer, covers the evolution of natural language

processing (NLP) that ultimately led to the advent of the Transformer
architecture. It introduces the Transformer—its basis in deep learning, its self-
attention architecture, and its rapid evolution, which has led to the generative
AI phenomenon.

Chapter 4, Applying Pretrained Generative Models: From Prototype to

Production, outlines the process of transitioning a generative AI prototype to a
production-ready deployment. It walks through setting up a robust Python
environment using Docker, GitHub, and CI/CD pipelines, then presents
considerations for selecting and deploying a suitable pre-trained model for the
project at hand, emphasizing computational considerations, proper evaluation,
monitoring, and responsible AI practices.

Chapter 5, Fine-Tuning Generative Models for Specific Tasks, examines how
Parameter-Efficient Fine-Tuning  (PEFT) facilitates approachable continued
training for specific tasks such as question-answering. It explores and defines a
range of scalable fine-tuning techniques, comparing them with other
approaches such as in-context learning.

Chapter 6, Understanding Domain Adaptation for Large Language Models,
introduces domain adaptation, a unique fine-tuning approach that equips



models to interpret language unique to specific industries or domains,
addressing the gap in LLMs’ understanding of specialized language.

Chapter 7, Mastering the Fundamentals of Prompt Engineering, explores
prompting techniques to examine how to adapt a general-purpose LLM without
fine-tuning. It explores various prompting strategies that leverage the model’s
inherent capabilities to produce targeted and contextually relevant outputs. It
explores a simple approach to RAG and provides techniques to understand and
measure performance.

Chapter 8, Addressing Ethical Considerations and Charting a Path Toward

Trustworthy Generative AI, recognizes the increasing prominence of generative
AI and explores the ethical considerations that should guide its progress. It
outlines key concepts such as transparency, fairness, accountability, respect for
privacy, informed consent, security, and inclusivity, which are essential for the
responsible development and use of these technologies.

To get the most out of this book

Readers should have a foundational understanding of Python programming and
a basic grasp of machine learning concepts. Familiarity with deep learning
frameworks such as TensorFlow or PyTorch will be beneficial but not essential.
The book assumes an intermediate level of Python proficiency, enabling readers
to focus on the generative AI concepts and applications covered throughout the
chapters.

Software/hardware covered in the

book

Operating system requirements

Python 3 GPU-enabled Windows, macOS, or
Linux

The book’s coding examples are designed to be compatible with Python 3 and
run on Windows, macOS, or Linux operating systems. To fully engage with the
hands-on tutorials and examples, access to a GPU is recommended, as many
generative AI models are computationally intensive. The book provides



guidance on setting up a suitable development environment, including
instructions for installing necessary libraries and dependencies.

If you are using the digital version of this book, we advise you to type

the code yourself or access the code from the book’s GitHub repository

(a link is available in the next section). Doing so will help you avoid any

potential errors related to the copying and pasting of code.

Throughout the book, readers are encouraged to actively experiment with the
code samples provided and adapt them to their own projects. The companion
GitHub repository serves as a valuable resource, offering more complete and
modular versions of the code examples presented in the chapters. Accessing
and working with this code will enhance the reader’s learning experience and
help solidify their understanding of the concepts covered.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python. Any
code updates will be provided in the GitHub repository. Please feel free to open
issues on this repository should any arise.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: “Each entry in the dataset needs to be tokenized
and structured with the necessary fields such as input_ids and attention_mask.”

A block of code is set as follows:
 

# Get the start and end positions 

answer_start_scores = outputs.start_logits 

answer_end_scores = outputs.end_logits

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold. Here is

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/


an example: “Click the + icon in the top-right corner of the GitHub home page
and select New repository.”

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email
us at customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packt.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Share Your Thoughts

Once you’ve read Generative AI Foundations in Python, we’d love to hear your
thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make
sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://www.packtpub.com/
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Part 1: Foundations of Generative AI and the

Evolution of Large Language Models

This part provides an overview of generative AI and the role of large language
models. It covers the basics of generative AI, different types of generative
models, including GANs, diffusers, and transformers, and the foundational
aspects of natural language processing. Additionally, it explores how pretrained
generative models can be applied from prototype to production, setting the
stage for more advanced topics.

This part contains the following chapters:
Chapter 1, Understanding Generative AI: An Introduction

Chapter 2, Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers

Chapter 3, Tracing the Foundations of Natural Language Processing and the Impact of the

Transformer

Chapter 4, Applying Pretrained Generative Models: From Prototype to Production



1

Understanding Generative AI: An Introduction

In his influential book The Singularity Is Near (2005), renowned inventor and
futurist Ray Kurzweil asserted that we were on the precipice of an exponential
acceleration in technological advancements. He envisioned a future where
technological innovation would continue to accelerate, eventually leading to a
singularity—a point where artificial intelligence (AI) could transcend
human intelligence, blurring the lines between humans and machines. Fast-
forward to today and we find ourselves advancing along the trajectory Kurzweil
outlined, with generative AI marking a significant stride along this path. Today,
we are experiencing state-of-the-art generative models can behave as
collaborators capable of synthetic understanding and generating sophisticated
responses that mirror human intelligence.. The rapid and exponential growth of
generative approaches is propelling Kurzweil’s vision forward, fundamentally
reshaping how we interact with technology.

In this chapter, we lay the conceptual groundwork for anyone hoping to apply
generative AI to their work, research, or field of study, broadening a
fundamental understanding of what this technology does, how it was derived,
and how it can be used. It establishes how generative models differ from
classical machine learning (ML) paradigms and elucidates how they discern
complex relationships and idiosyncrasies in data to synthesize human-like text,
audio, and video. We will explore critical foundational generative methods,
such as generative adversarial networks (GANs), diffusion models, and
transformers, with a particular emphasis on their real-world applications.

Additionally, this chapter hopes to dispel some common misunderstandings
surrounding generative AI and provides guidelines to adopt this emerging
technology ethically, considering its environmental footprint and advocating for
responsible development and adoption. We will also highlight scenarios where
generative models are apt for addressing business challenges. By the
conclusion of this chapter, we will better understand the potential of generative
AI and its applications across a wide array of sectors and have critically
assessed the risks, limitations, and long-term considerations.



Whether your interest is casual, you are a professional transitioning from a
different field, or you are an established practitioner in the fields of data
science or ML, this chapter offers a contextual understanding to make informed
decisions regarding the responsible adoption of generative AI.

Ultimately, we aim to establish a foundation through an introductory
exploration of generative AI and large language models (LLMs), dissected
into two parts.

The beginning of the book will introduce the fundamentals and history of
generative AI, surveying various types, such as GANs, diffusers, and
transformers, tracing the foundations of natural language generation

(NLG), and demonstrating the basic steps to implement generative models
from prototype to production. Moving forward, we will focus on slightly more
advanced application fundamentals, including fine-tuning generative models,
prompt engineering, and addressing ethical considerations toward the
responsible adoption of generative AI. Let’s get started.

Generative AI

In recent decades, AI has made incredible strides. The origins of the field stem
from classical statistical models meticulously designed to help us analyze and
make sense of data. As we developed more robust computational methods to
process and store data, the field shifted—intersecting computer science and
statistics and giving us ML. ML systems could learn complex relationships and
surface latent insights from vast amounts of data, transforming our approach to
statistical modeling.

This shift laid the groundwork for the rise of deep learning, a substantial step
forward that introduced multi-layered neural networks (i.e., a system of
interconnected functions) to model complex patterns. Deep learning enabled
powerful discriminative models that became pivotal for advancements in
diverse fields of research, including image recognition, voice recognition, and
natural language processing.

However, the journey continues with the emergence of generative AI.
Generative AI harnesses the power of deep learning to accomplish a broader
objective. Instead of classifying and discriminating data, generative AI seeks to



learn and replicate data distributions to “create” entirely new and seemingly
original data, mirroring human-like output.

Distinguishing generative AI from other AI models

Again, the critical distinction between discriminative and generative models
lies in their objectives. Discriminative models aim to predict target outputs
given input data. Classification algorithms, such as logistic regression or
support vector machines, find decision boundaries in data to categorize inputs
as belonging to one or more class. Neural networks learn input-output
mappings by optimizing weights through backpropagation (or tracing back to
resolve errors) to make accurate predictions. Advanced gradient boosting
models, such as XGBoost or LightGBM, further enhance these discriminative
models by employing decision trees and incorporating the principles of
gradient boosting (or the strategic ensembling of models) to make highly
accurate predictions.

Generative methods learn complex relationships through expansive training in
order to generate new data sequences enabling many downstream applications.
Effectively, these models create synthetic outputs by replicating the statistical
patterns and properties discovered in training data, capturing nuances and
idiosyncrasies that closely reflect human behaviors.

In practice, a discriminative image classifier labels images containing a cat or a
dog. In contrast, a generative model can synthesize diverse, realistic cat or dog
images by learning the distributions of pixels and implicit features from
existing images. Moreover, generative models can be trained across modalities
to unlock new possibilities in synthesis-focused applications to generate human-
like photographs, videos, music, and text.

There are several key methods that have formed the foundation for many of the
recent advancements in Generative AI, each with unique approaches and
strengths. In the next section, we survey generative advancements over time,
including adversarial networks, variational autoencoders, diffusion models, and
autoregressive transformers, to better understand their impact and influence.

Briefly surveying generative approaches



Modern generative modeling encompasses diverse architectures suited to
different data types and distinct tasks. Here, we briefly introduce some of the
key approaches that have emerged over the years, bringing us to the state-of-
the-art models:

Generative adversarial networks (GANs) involve two interconnected neural networks—one acting
as a generator to create realistic synthetic data and the other acting as a discriminator that
distinguishes between real and synthetic (fake) data points. The generator and discriminator are
adversaries in a zero-sum game, each fighting to outperform the other. This adversarial relationship
gradually improves the generator’s capacity to produce vividly realistic synthetic data, making GANs
adept at creating intricate image distributions and achieving photo-realistic image synthesis.

Variational autoencoders (VAEs) employ a unique learning method to compress data into a simpler
form (or latent representation). This process involves an encoder and a decoder that work conjointly
(Kingma & Welling, 2013). While VAEs may not be the top choice for image quality, they are
unmatched in efficiently separating and understanding complex data patterns.

Diffusion models continuously add Gaussian noise to data over multiple steps to corrupt it. Gaussian
noise can be thought of as random variations applied to a signal to distort it, creating “noise”.
Diffusion models are trained to eliminate the added noise to recover the original data distribution.
This type of reverse engineering process equips diffusion models to generate diverse, high-quality
samples that closely replicate the original data distribution, producing diverse high-fidelity images
(Ho et al., 2020).

Autoregressive transformers leverage parallelizable self-attention to model complex sequential
dependencies, showing exceptional performance in language-related tasks (Vaswani et al., 2017).
Pretrained models such as GPT-4 or Claude have demonstrated the capability for generalizations in
natural language tasks and impressive human-like text generation. Despite ethical issues and misuse
concerns, transformers have emerged as the frontrunners in language modeling and multimodal
generation.

Collectively, these methodologies paved the way for advanced generative
modeling across a wide array of domains, including images, videos, audio, and
text. While architectural and engineering innovations progress daily, generative
methods showcase unparalleled synthesis capabilities across diverse
modalities. Throughout the book, we will explore and apply generative methods
to simulate real-world scenarios. However, before diving in, we further
distinguish generative methods from traditional ML methods by addressing
some common misconceptions.

Clarifying misconceptions between discriminative

and generative paradigms



To better understand the distinctive capabilities and applications of traditional
ML models (often referred to as discriminative) and generative methods, here,
we clear up some common misconceptions and myths:

Myth 1: Generative models cannot recognize patterns as effectively as
discriminative models.

Truth: State-of-the-art generative models are well-known for their impressive
abilities to recognize and trace patterns, rivaling some discriminative models.
Despite primarily focusing on creative synthesis, generative models display
classification capabilities. However, the classes output from a generative model
can be difficult to explain as generative models are not explicitly trained to
learn decision boundaries or predetermined relationships. Instead, they may
only learn to simulate classification based on labels learned implicitly (or
organically) during training. In short, in cases where the explanation of model
outcomes is important, classification using a discriminative model may be the
better choice.

Example: Consider GPT-4. In addition to synthesizing human-like text, it can
understand context, capture long-range dependencies, and detect patterns in
texts. GPT-4 uses these intrinsic language processing capabilities to
discriminate between classes, such as traditional classifiers. However, because
GPT learns semantic relationships through extensive training, explaining its
decision-making cannot be accomplished using any established methods.

Myth 2: Generative AI will eventually replace discriminative AI.

Truth: This is a common misunderstanding. Discriminative models have
consistently been the option for high-stakes prediction tasks because they focus
directly on learning the decision boundary between classes, ensuring high
precision and reliability. More importantly, discriminative models can be
explained post-hoc, making them the ultimate choice for critical applications in
sectors such as healthcare, finance, and security. However, generative models
may increasingly become more popular for high-stakes modeling as
explainability techniques emerge.

Example: Consider a discriminative model trained specifically for disease
prediction in healthcare. A specialized model can classify data points (e.g.,
images of skin) as healthy or unhealthy, giving healthcare professionals a tool
for early intervention and treatment plans. Post-hoc explanation methods, such



as SHAP, can be employed to identify and analyze the key features that
influence classification outcomes. This approach offers clear insights into the
specific results (i.e., feature attribution).

Myth 3: Generative models continuously learn from user input.

Truth: Not exactly. Generative LLMs are trained using a static approach. This
means they learn from a vast training data corpora, and their knowledge is
limited to the information contained within that training window. While models
can be augmented with additional data or in-context information to help them
contextualize, giving the impression of real-time learning, the underlying model
itself is essentially frozen and does not learn in real time.

Example: GPT-3 was trained in 2020 and only contained information up to that
date until its successor GPT-3.5, released in March of 2023. Naturally, GPT-4
was trained on more recent data, but due to training limitations (including
diminishing performance returns), it is reasonable to expect that subsequent
training checkpoints will be released periodically and not continuously.

While generative and discriminative models have distinct strengths and
limitations, knowing when to apply each paradigm requires evaluating several
key factors. As we have clarified some common myths about their capabilities,
let’s turn our attention to guidelines for selecting the right approach for a given
task or problem.

Choosing the right paradigm

The choice between generative and discriminative models depends on various
factors, such as the task or problem at hand, the quality and quantity of data
available, the desired output, and the level of performance required. The
following is a list of key considerations:

Task specificity: Discriminative models are more suitable for high-stakes applications, such as
disease diagnosis, fraud detection, or credit risk assessment, where precision is crucial. However,
generative models are more adept at creative tasks such as synthesizing images, text, music, or video.

Data availability: Discriminative models tend to overfit (or memorize examples) when trained on
small datasets, which may lead to poor generalization. On the other hand, because generative models
are often pretrained on vast amounts of data, they can produce a diverse output even with minimal
input, making them a viable choice when data are scarce.

Model performance: Discriminative models outperform generative models in tasks where it is
crucial to learn and explain a decision boundary between classes or where expected relationships in



the data are well understood. Generative models usually excel in less constrained tasks that require a
measure of perceived creativity and flexibility.

Model explainability: While both paradigms can include models that are considered “black boxes” or
not intrinsically interpretable, generative models can be more difficult, or at times, impossible to
explain, as they often involve complex data generation processes that rely on understanding the
underlying data distribution. Alternatively, discriminative models often focus on learning the
boundary between classes. In use cases where model explainability is a key requirement,
discriminative models may be more suitable. However, generative explainability research is gaining
traction.

Model complexity: Generally, discriminative models require less computational power because they
learn to directly predict some output given a well-defined set of inputs.

Alternatively, generative models may consume more computational
resources, as their training objective is to jointly capture the intricate
hidden relationships between both inputs and presumed outputs. Accurately
learning these intricacies requires vast amounts of data and large
computations. Computational efficiency in generative LLM training (e.g.,
quantization) is a vibrant area of research.

Ultimately, the choice between generative and discriminative models should be
made by considering the trade-offs involved. Moreover, the adoption of these
paradigms requires different levels of infrastructure, data curation, and other
prerequisites. Occasionally, a hybrid approach that combines the strengths of
both models can serve as an ideal solution. For example, a pretrained
generative model can be fine-tuned as a classifier. We will learn about task-
specific fine-tuning in Chapter 5.

Now that we have explored the key distinctions between traditional ML (i.e.,
discriminative) and generative paradigms, including their distinct risks, we can
look back at how we arrived at this paradigm shift. In the next section, we take
a brief look at the evolution of generative AI.

Looking back at the evolution of generative AI

The field of generative AI has experienced an unprecedented acceleration,
leading to a surge in the development and adoption of foundation models such
as GPT. However, this momentum has been building for several decades, driven
by continuous and significant advancements in ML and natural language
generation research. These developments have brought us to the current
generation of state-of-the-art models.



To fully appreciate the current state of generative AI, it is important to
understand its evolution, beginning with traditional language processing
techniques and moving through to more recent advancements.

Overview of traditional methods in NLP

Natural language processing (NLP) technology has enabled machines to
understand, interpret, and generate human language. It emerged from
traditional statistical techniques such as n-grams and hidden Markov models

(HMMs), which converted linguistic structures into mathematical models that
machines could understand.

Initially, n-grams and HMMs were the primary methods used in NLP. N-grams
predicted the next word in a sequence based on the last “n” words, while
HMMs modeled sequences by considering every word as a state in a Markov
process. These early methods were good at capturing local patterns and short-
range dependencies in language.

As computational power and data availability grew, more sophisticated
techniques for natural language processing emerged. Among these was the
recurrent neural network (RNN), which managed relationships across
extended sequences and was proven to be effective in tasks where prior context
influenced future predictions.

Subsequently, long short-term memory networks (LSTMs) were developed.

Unlike traditional RNNs, LSTMs had a unique ability to retain relevant long-
term information while disregarding irrelevant data, maintaining semantic
relationships across prolonged sequences.

Further advancements led to the introduction of sequence-to-sequence models,
often utilizing LSTMs as their underlying structure. These models
revolutionized fields such as machine translation and text summarization by
dramatically improving efficiency and effectiveness.

Overall, NLP evolved from traditional statistical methods to advanced neural
networks, transforming how we interacted with machines and enabling
countless applications, such as machine translation and information retrieval
(IR) (or finding relevant text based on a query). As the NLP field matured,
incorporating the strengths of traditional statistical methods and advanced



neural networks, a renaissance was forming. The next generation of NLP
advancements would introduce transformer architectures, starting with the
seminal paper Attention is All You Need and later the release of models such as
BERT and eventually GPT.

Arrival and evolution of transformer-based

models

The release of the research paper titled Attention is All You Need in 2017
served as a paradigm shift in natural language processing. This pivotal paper
introduced the transformer model, an architectural innovation that provided an
unprecedented approach to sequential language tasks such as translation. The
transformer model contrasted with prior models that processed sequences
serially. Instead, it simultaneously processed different segments of an input
sequence, determining its relevance based on the task. This innovative
processing addressed the complexity of long-range dependencies in sequences,
enabling the model to draw out the critical semantic information needed for a
task. The transformer was such a critical advancement that nearly every state-
of-the-art generative LLM applies some derivation of the original architecture.
Its importance and influence motivate our detailed exploration and
implementation of the original transformer in Chapter 3.

With the transformer came significant advancements in natural language
processing, including GPT-1 or Generative Pretrained Transformer 1 (Radford
et al., 2018). GPT-1 introduced a novel directional architecture to tackle
diverse NLP tasks.

Coinciding with GPT-1 was BERT, or bidirectional encoder representations

from transformers, a pioneering work in the family of transformer-based
models. BERT stood out among its predecessors, analyzing sentences forward
and backward (or bi-directionally). This bidirectional analysis allowed BERT to
capture semantic and syntactic nuances more effectively. At the time, BERT
achieved unprecedented results when applied to complex natural language
tasks such as named entity recognition, question answering, and sentiment
analysis (Devlin et al., 2018).

Later, GPT-2, the much larger successor to GPT-1, attracted immense attention,
as it greatly outperformed any of its predecessors across various tasks. In fact,



GPT-2 was so unprecedented in its ability to generate human-like output that
concerns about potential implications led to a delay in its initial release (Hern,
2019).

Amid early concerns, OpenAI followed up with the development of GPT-3,
signaling a leap in the potential of LLMs. Developers demonstrated the
potential of training at a massive scale, reaching 175 billion parameters (or
adjustable variables learned during training), surpassing its two predecessors.
GPT-3 was a “general-purpose” learner, capable of performing a wide range of
natural language tasks learned implicitly from its training corpus instead of
through task-specific fine-tuning. This capability sparked the exploration of
foundation model development for general use across various domains and
tasks. GPT-3’s distinct design and unprecedented scale led to a generation of
generative models that could perform an indefinite number of increasingly
complex downstream tasks learned implicitly through its extensive training.

Development and impact of GPT-4

OpenAI’s development of GPT-4 marked a significant advance in the potential
of large-scale, multimodal models. GPT-4, capable of processing image and text
inputs and producing text outputs, represented yet another giant leap ahead of
predecessors.

GPT-4 exhibited human-level performance on various professional and
academic benchmarks. For instance, it passed a simulated bar exam with a
score falling into the top 10% of test-takers (OpenAI, 2023).

A key distinction of GPT-4 is what happens after pretraining. Open AI applied
reinforcement learning with human feedback (RLHF)—a type of
risk/reward training derived from the same technique used to teach
autonomous vehicles to make decisions based on the environment they
encounter. In the case of GPT-4, the model learned to respond appropriately to
a myriad of scenarios, incorporating human feedback along the way. This novel
refinement strategy drastically improved the model’s propensity for factuality
and its adherence to desired behaviors. The integration of RLHF demonstrated
how models could be better aligned with human judgment toward the goal of
responsible AI.



However, despite demonstrating groundbreaking abilities, GPT-4 had similar
limitations to earlier GPT models. It was not entirely reliable and had a limited
context window (or input size). Meaning it could not receive large texts or
documents as input. It was also prone to hallucination. As discussed,
Hallucination is an anthropomorphized way of describing the model’s tendency
to generate content that is not grounded in fact or reality. A hallucination
occurs because generative language models (without augmentation) synthesize
content purely based on semantic context and don’t perform any logical
processing to verify factuality. This weakness presented meaningful risks,
particularly in contexts where fact-based outcomes are paramount.

Despite limitations, GPT-4 made significant strides in language model
performance. As with prior models, GPT-4’s development and potential use
underscored the importance of safety and ethical considerations for future AI
applications. As a result, the rise of GPT-4 accentuated the ongoing discussions
and research into the potential implications of deploying such powerful models.
In the next section, we briefly survey some of the known risks that are unique
to generative AI.

Looking ahead at risks and implications

Both generative and discriminative AI introduce unique risks and benefits that
must be weighed carefully. However, generative methods can not only carry
forward but also exacerbate many risks associated with traditional ML while
also introducing new risks. Consequently, before we can adopt generative AI in
the real world and at scale, it is essential to understand the risks and establish
responsible governance principles to help mitigate them:

Hallucination: This is a term widely used to describe when models generate factually inaccurate
information. Generative models are adept at producing plausible-sounding output without basis in
fact. As such, it is critical to ground generative models with factual information. The term “grounding”
refers to appending model inputs with additional information that is known to be factual. We explore
grounding techniques in Chapter 7. Additionally, it is essential to have a strategy for evaluating model
outputs that includes human review.

Plagiarism: Since generative models are sometimes trained on uncrated datasets, some training
corpora may have included data without explicit permissions. Models may produce information that is
subject to copyright protections or can be claimed as intellectual property.

Accidental memorization: As with many ML models that train on immense corpora, generative
models tend to memorize parts of the training data. In particular, they are prone to memorizing
sparse examples that do not fit neatly into a broader pattern. In some cases, models could memorize



sensitive information that can be extracted and exposed (Brundage et al., 2020; Carlini et al., 2020).
Consequently, whether consuming a pretrained model or fine-tuning (i.e., continued model training),
training data curation is essential.

Toxicity and bias: Another byproduct of large-scale model training is that the model will inevitably
learn any societal biases embedded in the training data. Biases can manifest as gender, racial, or
socioeconomic biases in generated text or images, often replicating or amplifying stereotypes. We
detail mitigations for this risk in Chapter 8.

With an understanding of some of the risks, we turn our focus to the nuanced
implications of adopting generative AI:

Ethical: As discussed, these models inevitably learn and reproduce the biases inherent in the training
data, raising serious ethical questions. Similarly, concerns about data privacy and security have
emerged due to the model’s susceptibility to memorizing and exposing its training data. This has led
to calls for robust ethical guidelines and data privacy regulations (Gebru et al., 2018).

Environmental: LLMs are computational giants, demanding unprecedented resources for training
and implementation. Thus, they inevitably present environmental impacts. The energy consumption
required to train an LLM produces substantial carbon dioxide emissions—roughly the equivalent
lifetime emissions of five vehicles. Consequently, multiple efforts are underway to increase model
efficiency and reduce carbon footprints. For example, techniques such as reduced bit precision
training (or quantization) and parameter efficient fine-tuning (discussed in Chapter 5) reduce overall
training time, helping to shrink carbon footprints.

Social: Along with environmental impacts, LLMs also have social implications. As these models
become proficient at generating text, simulating intelligent conversation, and automating fundamental
tasks, they present an unparalleled opportunity for job automation. Due to various complex factors,
this potential for large-scale automation in the US may disproportionately affect marginalized or
underrepresented communities. Thus, this amplifies prior concerns regarding labor rights and the
need for additional protections to minimize harm.

Business and labor: Along with broader socio-economic implications, we must examine more direct
impacts on the business sector. While generative AI opens up new opportunities, changes in the labor
market could bring about immense disruption if not addressed responsibly. Beyond labor impacts, AI
advancements also significantly affect various business sectors. They can result in the creation of new
roles, business models, and opportunities, requiring ongoing governance strategy and explorative
frameworks that center on inclusivity, ethics, and responsible adoption.

Addressing these challenges will require technical and scientific improvements,
data-specific regulations and laws, ethical guidelines, and human-centered AI
governance strategies. These are integral to building an equitable, secure, and
inclusive AI-driven future.

Having discussed the history, risks, and limitations of generative AI, we are
now better equipped to explore the vast opportunities and applications of such
transformative technology.



Introducing use cases of generative AI

Generative AI has already begun to disrupt various sectors. The technology is
making waves across many disciplines, from enhancing language-based tasks to
reshaping digital art. The following section offers examples of real-world
applications of generative AI across different sectors:

Traditional natural language processing: LLMs, such as Open AI’s GPT series, have elevated
traditional NLP and NLG. As discussed, these models have a unique ability to generate coherent,
relevant, and human-like text. The potential of these models was demonstrated when GPT-3
outperformed classical and modern approaches in several language tasks, displaying an
unprecedented understanding of human language. The release of GPT-4 and Claude 3 marked another
milestone, raising the standard even further for state-of-the-art models.

Digital art creation: The advent of “generative art” is evidence of the radical impact of generative AI
in the field of digital art. For instance, artists can use AI generative models to create intricate designs,
allowing them to focus on the conceptual aspect of art. It simplifies the process, reducing the need for
high-level technical acumen.

Music creation: In the music industry, generative AI can enhance the composition process. Several
platforms offer high-quality AI-driven music creation tools that can generate long-form musical
compositions combining different music styles across various eras and genres.

Streamlining business processes: Several businesses have started employing generative AI to
enable faster and more efficient processes. Generative AI-enabled operational efficiencies allow
employees to focus on more strategic tasks. For example, fully integrated LLM email clients can
organize emails and (combined with other technologies) learn to prioritize critical emails over time.

Entertainment: While still largely experimental, LLMs show promising potential to disrupt creative
writing and storytelling, particularly in the gaming industry. For example, procedural games could
apply LLMs to enhance dynamic storytelling and create more engaging, personalized user
experiences. As technology advances, we may see more mainstream adoption of LLMs in gaming,
opening up new possibilities for interactive narratives.

Fashion: In the fashion industry, generative models help designers innovate. By using a state-of-the-
art generative AI model, designers can create and visualize new clothing styles by simply tweaking a
few configurations.

Architecture and construction: In the architectural world, generative-enhanced tools can help
architects and urban planners optimize and generate design solutions, leading to more efficient and
sustainable architectural designs.

Food industry: Emerging AI-driven cooking assistants can generate unique food combinations, novel
recipes, and modified recipes for highly specific dietary needs.

Education: Generative AI-enhanced educational platforms offer the automatic creation of study aids
that can facilitate personalized learning experiences and can automatically generate tailored content
to accommodate specific and diverse learning styles.

However, we must balance the breadth of opportunities with sophisticated
guardrails and the continued promotion of ethical use. As data scientists,



policymakers, and industry leaders, we must continue to work towards
fostering an environment conducive to responsible AI deployment. That said, as
generative AI continues to evolve, it presents a future replete with novel
innovations and applications.

The future of generative AI applications

The relentless advancement of generative AI presents a future filled with both
possibilities and complex challenges. Imagine a future where a generative
model trained on the world’s leading climate change research can offer
practical yet groundbreaking counteractive strategies with precise details
about their application.

However, as we embrace an increasingly AI-centered future, we should not
overlook the existing challenges. These involve the potential misuse of AI tools,
unpredictable implications, and the profound ethical considerations underlying
AI adoption. Additionally, sustainable and eco-conscious development is key, as
training large-scale models can be resource-intensive

In an age of accelerated progress, collaboration across all stakeholders—from
data scientists, AI enthusiasts, and policymakers to industry leaders—is
essential. By being equipped with comprehensive oversight, robust guidelines,
and strategic education initiatives, concerted efforts can safeguard a future
where generative AI is ubiquitous.

Despite these hurdles, the transformative potential of generative AI remains
unquestionable. With its capacity to reshape industries, redefine societal
infrastructures, and alter our ways of living, learning, and working, generative
AI serves as a reminder that we are experiencing a pivotal moment—one
propelled by decades of scientific research and computational ingenuity that
are coalescing to bring us forward as a society.

Summary

In this chapter, we traced the evolution of generative AI, distinguished it from
traditional ML, explored its evolution, discussed its risks and implications, and,
hopefully, dispelled some common misconceptions. We contemplated some of
the possibilities anchored by consideration for its responsible adoption.



As we move on to the next chapter, we will examine the fundamental
architectures behind generative AI, giving us a foundational understanding of
the key generative methods, including GANs, diffusion models, and
transformers. These ML methods form the backbone of generative AI and have
been instrumental in bringing about the remarkable advancements we see
today.
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2

Surveying GenAI Types and Modes: An Overview

of GANs, Diffusers, and Transformers

In the previous chapter, we established the key distinction between generative
and discriminative models. Discriminative models focus on predicting outputs
by learning p(output∣input), or the conditional probability of some expected
output given an input or set of inputs. In contrast, generative models, such as
Generative Pretrained Transformer (GPT), generate text by predicting the
next token (a partial word, whole word, or punctuation) using p(next
token∣previous tokens), based on the probabilities of possible continuations given
the current context. Tokens are represented as vectors containing embeddings
that capture latent features and rich semantic dependencies learned through
extensive training.

We briefly surveyed leading generative approaches, including Generative

Adversarial Networks (GANs), Variational Autoencoders (VAEs), diffusion
models, and autoregressive transformers. Each methodology possesses unique
strengths suitable for different data types and tasks. For example, GANs are
adept at generating high-fidelity photographic images through an adversarial
process. Diffusion models take a probabilistic approach, iteratively adding and
removing noise from data to learn robust generative representations.
Autoregressive transformers leverage self-attention and massive scale to
achieve remarkable controlled text generation.

In this chapter, we will explore the theoretical foundations and real-world
applications of these techniques in greater depth. We will make direct
comparisons, elucidating architectural innovations and enhancements that
improve training stability and output quality over time. Through practical
examples, we will see how researchers have adapted these models to produce
art, music, videos, stories, and so on.

To enable an unbiased comparison, we will concentrate primarily on image
synthesis tasks. GANs and diffusion models are specifically architected for
image data, harnessing advances in convolutional processing and computer
vision. Transformers, powered by self-attention, excel at language modeling but



can also generate images. This will allow us to benchmark performance on a
common task.

By the end of this chapter, we will have implemented state-of-the-art image
generation models and explored how these core methods enhance and
complement each other.

Understanding General Artificial Intelligence

(GAI) Types – distinguishing features of GANs,

diffusers, and transformers

The often-stunning human-like quality we experience from GAI can be
attributed to deep-generative machine learning advances. In particular, three
fundamental methods have inspired many derivative innovations – GANs,
diffusion models, and transformers. Each has its distinct strengths and is
particularly well-suited for specific applications.

We briefly described GANs, a groundbreaking approach that exploits the
adversarial interplay between two competing neural networks – a generator
and a discriminator – to generate hyper-realistic synthetic data. Over time,
GANs have seen substantial advancements, achieving greater control in data
generation, higher image fidelity, and enhanced training stability. For instance,
NVIDIA’s StyleGAN has created highly detailed and realistic human faces. The
adversarial training process of GANs, where one network generates data and
the other evaluates it, allows you to create highly refined and detailed synthetic
images, enhancing realism with each training iteration. The synthetic images
generated can be utilized in a plethora of domains. In the entertainment
industry, they can be used to create realistic characters for video games or
films. In research, they provide a means to augment datasets, especially in
scenarios where real data is scarce or sensitive. Moreover, in computer vision,
these synthetic images aid in training and fine-tuning other machine-learning
models, advancing applications like facial recognition.

Diffusion models, an innovative generative modeling alternative, explicitly
address some GAN limitations. As discussed briefly in Chapter 1, diffusion
models adopt a unique approach to introducing and systematically removing
noise, enabling high-quality image synthesis with less training complexity. In
medical imaging, diffusion models can significantly enhance image clarity by



generating high-resolution synthetic examples to train other machine-learning
models. Introducing and then iteratively removing noise can help reconstruct
high-fidelity images from lower-quality inputs, which is invaluable in scenarios
where obtaining high-resolution medical images is challenging.

Simultaneously, generative transformers, initially designed for language
modeling, have been adopted for multimodal synthesis. Today, transformers are
not confined to language and have permeated into audio, images, and video
applications. For instance, OpenAI’s GPT-4 excels in processing and generating
text, while DALL-E creates images from textual descriptions, a perfect example
of the interplay between methods. When integrated, GPT-4 and DALL-E form a
robust multimodal system. GPT-4 processes and understands textual
instructions, while DALL-E takes the interpreted instructions to generate
corresponding visual representations. A practical application of this
combination could be automated digital advertisement creation. For example,
given textual descriptions of a product and the desired aesthetic, GPT-4 could
interpret these instructions, and DALL-E could generate visually compelling
advertisements accordingly.

Deconstructing GAI methods – exploring GANs,

diffusers, and transformers

Let’s deconstruct these core approaches to understand their distinct
characteristics and illustrate their transformative role in advancing generative
machine learning. As GAI continues to move forward, it’s crucial to understand
how these approaches drive innovation.

A closer look at GANs

GANs, introduced by Goodfellow et al. in 2014, primarily consist of two neural
networks – the Generator (G) and the Discriminator (D). G aims to create
synthetic data resembling real data, while D strives to distinguish real from
synthetic data.

In this setup, the following occurs:

1. G receives input from a “latent space,” a high-dimensional space representing structured randomness.
This structured randomness serves as a seed to generate synthetic data, transforming it into
meaningful information.



2. D evaluates the generated data, attempting to differentiate between real (or reference) and synthetic
data.

In short, the process begins with G deriving random noise from the latent
space to create data. This synthetic data, along with real data, is supplied to
D, which then tries to discern between the two. Feedback from D informs
the parameters of G to refine its data generation process. The adversarial
interaction continues until an equilibrium is reached.

3. Equilibrium in GANs occurs when D can no longer differentiate between real and synthetic data,
assigning an equal probability of 0.5 to both. Arriving at this state signals that the synthetic data
produced by G is indistinguishable from real data, which is the core objective of the synthesis process.

Ultimately, the success of GANs has had meaningful implications for various
sectors. In the automotive industry, GANs have been used to simulate real-
world scenarios for autonomous vehicle testing. In the entertainment sector,
GANs are deployed to generate digital characters and realistic environments
for filmmaking and game design. In the art world, GANs can literally craft new
words. Moreover, the development of GANs has continued to move forward
over the years with significant improvements in quality, control, and overall
performance.

Advancement of GANs

Since its inception, GAN technology has evolved significantly with several
notable advancements:

Conditional GANs (cGANs): Introduced by Mirza and Osindero in 2014, conditional GANs
incorporated specific conditions during data generation, enabling more controlled outputs. cGANs
have been used in tasks such as image-to-image translation (e.g., converting photos into paintings).

Deep Convolutional GANs (DCGANs): In 2015, Radford et al. enhanced GANs by integrating
convolutional layers, which help to analyze image data in small, overlapping regions to capture fine
granularity, substantially improving the visual quality of the synthetic output. DCGANs can generate
realistic images for applications such as fashion design, where the model evolves new designs from
existing trends.

Wasserstein GANs (WGANs): Introduced by Arjovsky et al. in 2017, Wasserstein GANs applied the
Wasserstein distance metric to GANs’ objective function, facilitating a more accurate measurement of
differences between real and synthetic data. Specifically, the metric helps you find the most efficient
way to make the generated data distribution resemble the real data distribution. This small
adjustment leads to a more stable learning process, minimizing volatility during training. WGANs have
helped generate realistic medical imagery to aid in training diagnostic AI algorithms, improving a
model’s ability to generalize from synthetic to actual data.



Following the advent of Wasserstein GANs, the landscape experienced a surge
of inventive expansions, each tailor-made to address specific challenges or
open new avenues in synthetic data generation:

Progressively growing GANs incrementally increase the resolution during training, starting with
lower-resolution images and gradually moving to higher resolution. This approach allows the model to
learn coarse-to-fine details effectively, making training more manageable and generating high-quality
images (Karras et al. 2017). These high-resolution images can enhance the realism and immersion of
virtual reality environments.

CycleGANs facilitates image-to-image translations, bridging domain adaptation tasks (Zhu et al.,
2017). For example, a CycleGAN could transform a summer scene into a winter scene without
requiring example pairs (e.g., summer-winter) during training. CycleGANs have been used to simulate
weather conditions in autonomous vehicle testing, evaluating system performance under varying
environmental conditions.

BigGANs push the boundaries in high-resolution image generation, showcasing the versatility of
GANs in complex generation tasks. They achieve this by scaling up the size of the model (more layers
and units per layer) and the batch size during training, alongside other architectural and training
innovations (Brock et al., 2018). BigGANs have been used to generate realistic textures for video
games, enhancing gaming environments’ realism.

These developments significantly broadened what GANs could achieve, ranging
from high-resolution image synthesis to domain adaptation and cross-modal
generation tasks. However, despite these incredible advancements, GANs have
suffered from some continual limitations, which inspired alternative approaches
such as diffusion.

Limitations and challenges of GANs

The training process of GANs requires a careful balance between the G and D
networks. It requires substantial computational resources, often demanding
powerful GPUs and enormous datasets to achieve desirable outcomes.
Moreover, there are complexities in training GANs that arise from challenges
such as vanishing gradients and mode collapse. While the vanishing gradient
problem is a problem broadly affecting deep neural networks, mode collapse is
a challenge that is particularly unique to the training of GANs. Let’s explore
these a bit further:

Vanishing gradients: This issue arises during the neural network training phase when the gradient
of the loss function diminishes to a point where the learning either drastically slows or halts. The crux
of GANs lies in the delicate balance of learning between the G and D models. Disproportionate
learning can hinder the overall training process. In practical terms, the issue of vanishing gradients
can lead to longer training times and increased computational costs, which might render GANs
impractical for time-sensitive or resource-constrained applications.



Mode collapse: Inherent to GANs, mode collapse occurs when the G starts producing a narrow
variety of samples, thereby stifling output diversity and undermining a network’s effectiveness.
Techniques such as a gradient penalty and spectral normalization have alleviated these issues. This
phenomenon can significantly degrade the quality of generated data, limiting the use of GANs in
applications that require diverse outputs, such as data augmentation for machine learning or
generating diverse design alternatives in creative industries.

Of course, GANs carry the same ethical considerations as any state-of-the-art
generative synthesis. For instance, they can be used to create deepfakes or
generate biased outputs that reinforce societal prejudices. For example, when
GANs, often used to generate synthetic data (e.g., faces), underrepresent
certain groups, downstream applications may exhibit gender or racial bias
(Kenfack et al., 2021).

Even with the advent of other generative models such as diffusion models and
Transformer-based image generators, GANs have played a seminal role in
shaping the trajectory of generative image synthesis, showcasing both the
potential and some of the challenges inherent in this domain.

Now that we better understand GANs in the context of deep generative models,
let’s shift our focus to a successor in image generation, the diffusion model.

A closer look at diffusion models

Having explored the dynamics of GANs, let’s transition our attention to a
subsequent innovation in image generation – the diffusion model. Initially
proposed by Sohl-Dickstein et al. in 2015, diffusion models present a novel
approach, where a neural network iteratively introduces and subsequently
removes noise from data to generate highly refined images. Unlike GANs,
which leverage an adversarial mechanism involving two contrasting models,
diffusion models apply a more gradual, iterative process of noise manipulation
within the data.

In practical terms, GANs have shown substantial merit in art and design,
creating realistic faces or generating sharp, high-fidelity images from
descriptions. They are also used in data augmentation, expanding datasets by
generating realistic synthetic data to augment the training of machine learning
models.



Conversely, diffusion models excel in tasks requiring a structured approach to
image generation, such as in medical imaging. Their iterative process can
enhance the quality of medical images, such as MRI or CT scans, where noise
reduction and clarity are paramount. This makes diffusion models invaluable in
clinical settings, aiding in better diagnostics and analysis. Moreover, their
controlled and gradual process offers a more predictable or stable training
process compared to the adversarial and dynamic training of GANs.

The foundation of diffusion models is anchored in two primary processes:

A forward diffusion process: This process begins with clean data (x₀) and iteratively introduces
Gaussian noise, akin to progressively applying a fog-like filter, transforming the data into
indistinguishable noise (xₜ).

A learned reverse model: Following the forward diffusion, the “reverse model” (pθ) attempts to
eliminate (or de-fog) the noise from the noisy data (xₜ), aiming to revert to the original clean state
(xₜ₋₁). Specifically, this reversion is orchestrated by estimating the probability of transitioning from
the noisy state back to the clear state, using a conditional distribution denoted as pθ(xₜ₋₁|xₜ). A
conditional distribution tells us the likelihood of one event happening when we know another
related event has occurred. In this case, the reversion estimates the likelihood of reverting to the
original state, given some amount of noise.

In the pivotal work Score-Based Generative Modeling through Stochastic

Differential Equations, the authors propose a novel framework that unifies
score-based generative models and diffusion probabilistic modeling by
employing Stochastic Differential Equations (SDEs). This framework
involves the transformation of data distributions to a known prior distribution
through the gradual addition and then removal of noise, guided by SDEs.
Optimizing the reverse-time SDE – dependent only on the score of the
perturbed data distribution – allows you to generate new samples. Stochastic

Gradient Descent (SGD) is then applied to fine-tune the model parameters
until arriving at an improved pθ.

The reverse model (pθ) was implemented using convolutional networks to
predict variations in the Gaussian noise distribution – a critical component of
the noise-introduction process within the forward diffusion. Initially, the
efficacy of this approach was validated on more straightforward datasets.
However, the methodology’s applicability was later significantly improved to
handle more complex images (Ho et al., 2020). This expansion demonstrated
the practical potential of diffusion models in generating highly refined images
across a broader spectrum of complexities.



Advancement of diffusion models

Since its inception, diffusion model technology has witnessed key
advancements, propelling its capabilities in image generation:

Simplified training objectives: Ho et al. proposed simplified training objectives that predict
Gaussian noise directly, eliminating the need for conditional means and facilitating the application to
more complex datasets (Ho et al., 2020). This advancement facilitated handling more complex
datasets, potentially aiding in tasks such as anomaly detection or complex data synthesis, which could
be resource-intensive with traditional models.

UNet modules with self-attention: Ho et al. also incorporated UNet modules with self-attention
into the diffusion model architecture, inspired by PixelCNN++ by Salimans et al. (2017), enhancing a
model’s performance on complex datasets (Ho et al., 2020). Again, enhancing performance on
complex datasets facilitates better image restoration, which is particularly beneficial in fields such as
medical imaging or satellite imagery analysis, where high-fidelity image reconstruction is crucial.

Synchronization with SDEs: Song et al. defined diffusion models as solutions to SDEs, linking score
learning with denoising score-matching losses and expanding model usage for image generation,
editing, in-painting, and colorization (Song et al., 2020).

Following these foundational advancements, diffusion models witnessed a wave
of innovative enhancements as researchers introduced novel methodologies to
address existing challenges and broaden a model’s applicability in generative
modeling tasks. These advancements include the following:

Noise conditioning and annealing strategies: Song et al. improved score-based models by
including noise conditioning and annealing strategies, achieving performance comparable to GANs on
benchmark datasets like the Flickr-Faces-HQ dataset (Song et al., 2021), which is a high-quality
image dataset of human faces designed to measure GAN performance. Achieving performance
comparable to GANs could make diffusion models a viable alternative for high-fidelity image
generation tasks in areas where GANs are traditionally used.

Latent Diffusion Models (LDMs): Rombach et al. addressed computational inefficiency by
proposing LDMs, which operate in a compressed latent space learned by autoencoders, employing
perceptual losses to create a visually equivalent, reduced latent space (Rombach et al., 2021). By
addressing computational inefficiency, LDMs could expedite the image generation process, making
them suitable for real-time applications or scenarios where computational resources are limited.

Classifier-free guidance: Ho & Salimans introduced classifier-free guidance for controlled
generation without relying on pre-trained networks, marking a step toward more flexible generation
techniques (Ho & Salimans, 2022). This advancement led to more flexible generation techniques,
enabling more controlled and customized image generation in applications such as design,
advertising, or content creation without relying on pre-trained networks.

Subsequent explorations in the diffusion model domain extended its
applications, showcasing versatility:

Video generation: Ho et al. adapted diffusion models for video generation, demonstrating their
utility beyond static image generation (Ho et al., 2022)



3D data processing: Luo & Hu extended the application to 3D data processing, showcasing the
flexibility of diffusion models (Luo & Hu, 2021)

The evolution of diffusion models has led to enhanced image generation and
expanded applications in video, 3D data processing, and rapid learning
methodologies. However, the methodology does have its challenges and
limitations, outlined in some detail in the section that follows..

Limitations and challenges of diffusion models

Despite their evident benefits and notable progress, diffusion models have
some unique limitations, such as the following:

Sampling speed: A notable limitation of diffusion models is the slow sampling process, particularly
when compared to GANs. Sampling, in this context, refers to the process of generating new data
points from the learned distribution of a model. The speed at which new samples can be generated is
crucial for many real-time or near-real-time applications, and the slower sampling speed of diffusion
models can be a significant drawback.

Stability during large-scale training: The stability of diffusion models during large-scale training is
another area requiring further exploration. Large-scale training refers to training a model on a
substantial amount of data, sometimes leading to instability in the model’s learning process. Ensuring
stability during this phase is crucial to achieve reliable and consistent performance from the model.

A close examination of the societal impact of the media generated by these
models is crucial, especially given the level of fine control now possible over
the generated content. However, diffusion models’ inherent simplicity,
versatility, and positive inductive biases signify a bright future. These
attributes suggest a trajectory of rapid development within generative
modeling, potentially integrating diffusion models as pivotal components in
various disciplines, such as computer vision and graphics.

A closer look at generative transformers

The revolutionary advent of transformer models has significantly impacted the
task of generating high-fidelity images from text descriptions. Notable models
such as CLIP (Contrastive Language-Image Pretraining) and DALL-E
utilized transformers in unique ways to create images based on natural
language captions. This section will discuss the transformer-based approach for
text-to-image generation, its foundations, the key techniques, the resulting
benefits, and some challenges.



A brief overview of transformer architecture

The original transformer architecture, introduced by Vaswani et al. in 2017, is a
cornerstone of many modern language-processing systems. In fact, the
transformer may be considered the most important architecture in the area of
GAI, as it is foundational to the GPT series of models and many other state-of-
the-art generative methods. As such, we’ll cover the architecture briefly in our
survey of generative approaches but will have a dedicated chapter, where we
will have the opportunity to deconstruct and implement the transformer from
scratch.

At the core of the transformer architecture lies the self-attention

mechanism, a unique approach that captures complex relationships among
different elements within an ordered data sequence. These elements, known as
tokens, represent words in a sentence or characters in a word based on the
level of granularity chosen for tokenization.

The principle of attention in this architecture enables a model to focus on
certain pivotal aspects of the input data while potentially disregarding less
significant parts. This mechanism augments the model’s understanding of the
context and the relative importance of words in a sentence.

The transformer bifurcates into two main segments, the encoder and the
decoder, each comprising multiple layers of self-attention mechanisms. While
the encoder discerns relationships between different positions in the input
sequence, the decoder focuses on the outputs from the encoder, employing a
variant of self-attention termed masked self-attention to prevent
consideration of future outputs it hasn’t generated yet.

The calculation of attention weights through the scaled dot-product of query
and key vectors plays a crucial role in determining the level of focus on
different parts of the input. Additionally, multi-head attention allows the
model to channel attention toward multiple data points simultaneously.

Lastly, to retain the sequence order of data, the model adopts a strategy known
as positional encoding. This mechanism is vital for tasks requiring an
understanding of sequence or temporal dynamics, ensuring the model
preserves the initial order of data throughout its processing.



Again, we will revisit the transformer architecture in Chapter 3 to further
reinforce our understanding, as it is foundational to the continued research and
evolution of generative AI. Nevertheless, with at least a fundamental grasp of
the Transformer architecture, we are better positioned to dissect transformer-
driven generative modeling paradigms across a spectrum of applications.

Generative modeling paradigms with transformers

In tackling various tasks, transformers adopt distinct training paradigms
aligning with the task at hand. For example, discriminative tasks such as
classification might use a masking paradigm:

Masked Language Modeling (MLM): MLM is a discriminative pretraining technique used by
models such as BERT (Bidirectional Encoder Representations from Transformers). During
training, some percentage of input tokens are randomly masked out. The model must then predict the
original masked words based on the context of the surrounding unmasked words. This teaches the
model to build robust context-based representations, facilitating many downstream natural

language processing (NLP) tasks.

MLM, as utilized in BERT, has been instrumental in enhancing the performance
of NLP systems across various domains. For instance, it can power medical
coding systems in healthcare by accurately identifying and categorizing
medical terms within clinical notes. This automatic coding can save significant
time and reduce errors in medical documentation, thereby improving the
efficiency and accuracy of healthcare data management.

For generative tasks, the focus shifts to creating new data sequences, requiring
different training paradigms:

Sequence-to-sequence modeling: Sequence-to-sequence models employ both an encoder and a
decoder. The encoder maps the input sequence to a latent representation. The decoder then
generates the target sequence token by token from that representation. This paradigm is useful for
tasks such as translation, summarization, and question-answering.

Autoregressive modeling: Autoregressive modeling generates sequences by predicting the next
token conditioned only on previous tokens. The model produces outputs one step at a time, with each
new token depending on those preceding it. Autoregressive transformers such as GPT leverage this
technique for controlled text generation.

Transformers combine self-attention for long-range dependencies, pre-trained
representations, and autoregressive decoding to adapt to discriminative and
generative tasks.



Advanced generative synthesis can be achieved with different architectures
that make trade-offs between complexity, scalability, and specialization. For
example, instead of using both the encoder and decoder, many state-of-the-art
generative models employ a decoder-only or encoder-only approach. The
encoder-decoder framework is often the most computationally intensive
learning to specialize in, as it increases model size. Decoder-only architectures
leverage powerful pre-trained language models such as GPT as the decoder,
reducing parameters through weight sharing. Encoder-only methods forego
decoding, instead, they encode inputs and perform regression or search on the
resulting embeddings. Each approach has advantages that suit certain use
cases, datasets, and computational budgets. In the following sections, we
explore examples of models that employ these derivative transformer
architectures for creative applications, such as image generation and
captioning.

Encoder-only approach

In certain models, only the encoder network maps the input to an embedding
space. The output is then generated directly from this embedding, eliminating
the need for a decoder. While this straightforward architecture has typically
found its place in classification or regression tasks, recent advancements have
broadened its application to more complex tasks. In particular, models
developed for tasks such as image synthesis leverage the encoder-only setup to
process both text and visual inputs, creating a multimodal relationship that
facilitates the generation of high-fidelity images from natural language
instruction.

Decoder-only approach

Similarly, some models operate using a decoder-only strategy, where a singular
decoder network is tasked with both encoding the input and generating output.
This mechanism starts by joining the input and output sequences, which the
decoder processes. Despite its simplicity and the characteristic sharing of
parameters between input and output stages, the effectiveness of this
architecture relies heavily on the pretraining of robust decoders. Recently,
even more complex tasks such as text-to-image synthesis have seen the



successful deployment of the decoder-only architecture, illustrating its
versatility and adaptability to diverse applications.

Advancement of transformers

Transformer mechanisms with other novel techniques to tackle generative
tasks. This evolution led to distinct approaches to handling text and image
generation. In this section, we will explore some of these innovative models and
their unique methodologies in advancing GAI.

Encoder-decoder image generation with DALL-E

Introduced by Ramesh et al. in 2021, DALL-E employs an encoder-decoder
framework to facilitate text-to-image generation. This model comprises two
primary components:

Text encoder: Applies the transformer’s encoder, processing plain text to derive a semantic
embedding that serves as the context for the image decoder.

Image decoder: Applies the transformer’s decoder to generate the image autoregressively,
predicting each pixel based on the text embedding and previously predicted pixels.

By training on image-caption datasets, DALL-E refines the transition from text
to detailed image renderings. This setup underscores the capability of
dedicated encoder and decoder modules for conditional image generation.

Encoder-only image captioning with CLIP

CLIP, conceptualized by Radford et al. in 2021, adopts an encoder-only
approach for image-text tasks. Key components include a visual encoder and a
text encoder.

Visual Encoder and Text Encoder process the image and candidate captions,
respectively, determining the matching caption based on encoded
representations.

Pretraining on extensive image-text datasets enables CLIP to establish a shared
embedding space, facilitating efficient inference for retrieval-based captioning.

Improving image fidelity with scaled transformers

(DALL-E 2)



Ramesh et al. in 2022 extended DALL-E to DALL-E 2, showcasing techniques to
enhance visual quality:

A scaled-up decoder: By expanding the decoder to 3.5 billion parameters and applying classifier-free
guidance during sampling, visual quality in complex image distributions such as human faces is
significantly improved.

Hierarchical decoding for high-resolution images (GLIDE): Proposed by Nichol et al. in 2021,
GLIDE employs a hierarchical generation strategy.

A coarse-to-fine approach: This entails an initial low-resolution image prediction followed by
progressive detailing through up-sampling and refining, capturing global structure and high-
frequency textures.

Multimodal image generation with GPT-4

GPT-4 developed by OpenAI, is a powerful multimodal model based on the
Transformer architecture. GPT-4 demonstrates a capability for conditional
image generation without requiring continued training or fine-tuning:

Pretraining and fine-tuning: The massive scale of GPT-4 and its pretraining on diverse datasets
enable a robust understanding of relationships between textual and visual data.

Multimodal generation: GPT-4 can generate images based on text descriptions. The model uses a
deep neural network to encode the semantic meaning of the text into a visual representation. Given a
text prompt, GPT-4 generates an image by predicting the visual content consistent with the provided
text. This involves taking high-dimensional text embeddings and processing them through successive
neural network layers to generate a corresponding visual representation.

Using a pretrained multimodal model eliminates the need for a separate
encoder module for image inputs, facilitating rapid adaptation for image
generation tasks. This approach underscores the versatility and power of
Transformer architectures in generative tasks, providing a streamlined
methodology to translate text into high-quality images.

Transformer architectures offer many benefits for controlled image generation
when compared to GANs. Their autoregressive nature ensures precise control
over image construction while allowing you to adapt to varying computational
needs and diverse downstream applications. However, transformers also
introduce new challenges in this domain.

Limitations and challenges of transformer-based

approaches



Some early transformers-based approaches demonstrated slower sampling
speed and restricted fidelity compared to GANs. Generating or manipulating
images while maintaining precise control over specific attributes or
characteristics of the objects within those images remains challenging.
Additionally, training large-scale transformers that can overcome these
challenges demands extensive computing resources. Notwithstanding, current
multimodal results demonstrate a rapidly evolving and promising landscape.

We must also remember that alongside technical challenges there are broader
sociotechnical implications and considerations.

Bias and ethics in generative models

Significant advancements in generative models such as GANs, diffusers, and
transformers necessitate serious contemplation of potential bias and ethical
implications.

We need to remain alert to the risk of reinforcing prejudices and stereotypes
that reflect skewed training data. For instance, diffusion models trained on
data that over-represents specific demographics might propagate these biases
in their output. Analogously, language models exposed to toxic or violent
content during training might generate similar content.

The directive nature of prompt-based generation also, unfortunately, opens
doors to misuse if deployed carelessly. Transformers risk facilitating
impersonation, misinformation, and the creation of deceptive content. Image
synthesis models such as GANs could potentially be exploited to generate non-
consensual deepfakes or artificial media.

Additionally, the potential for ultra-realistic output prompts ethical dilemmas
regarding consent, privacy, identity, and copyright. The ability to create
convincingly real yet fictional faces or voices complicates the distinction
between real and synthetic, necessitating careful examination of training data
sources and generative capabilities.

Further, as these technologies become ubiquitous, their societal impact must
be considered. Defining clear policies will be crucial as the distinction between
authentic and AI-generated content becomes increasingly ambiguous.
Upholding principles of integrity, attribution, and consent remains vital.



Despite these risks, the potential benefits of generative models are substantial.
Addressing bias proactively, advocating transparency, auditing data and
models, and implementing safeguards become increasingly critical as
technologies evolve. Ultimately, the responsibility to ensure fairness,
accountability, and ethical practice falls on all developers and practitioners.

Applying GAI models – image generation using

GANs, diffusers, and transformers

In this hands-on section, we’ll reinforce the concepts discussed throughout the
chapter by putting them into practice. You’ll get a first-hand experience and
deep dive into the actual implementation of generative models, specifically
GANs, diffusion models, and transformers.

The Python code provided will guide you through this process. Manipulating
and observing the code in action will build your understanding of the intricate
workings and potential applications of these models. This exercise will provide
insight into model capabilities for tasks like generating art from prompts and
synthesizing hyper-realistic images.

We’ll be utilizing the highly versatile PyTorch library, a popular choice among
machine learning practitioners, to facilitate our operations. PyTorch provides a
powerful and dynamic toolset to define and compute gradients, which is central
to training these models.

In addition, we’ll also use the diffusers library. It’s a specialized library that
provides functionality to implement diffusion models. This library enables us to
reproduce state-of-the-art diffusion models directly from our workspace. It
underpins the creation, training, and usage of denoising diffusion probabilistic
models at an unprecedented level of simplicity, without compromising the
models’ complexity.

Through this practical session, we’ll explore how to operate and integrate these
libraries and implement and manipulate GANs, diffusers, and transformers
using the Python programming language. This hands-on experience will
complement the theoretical knowledge we have gained in the chapter, enabling
us to see these models in action in the real world.



By the end of this section, you will not only have a conceptual understanding of
these generative models but also understand how they are implemented,
trained, and used for several innovative applications in data science and
machine learning. You’ll have a much deeper understanding of how these
models work and the experience of implementing them yourself.



Working with Jupyter Notebook and Google Colab

Jupyter notebooks enable live code execution, visualization, and explanatory
text, suitable for prototyping and data analysis. Google Colab, conversely, is a
cloud-based version of Jupyter Notebook, designed for machine learning
prototyping. It provides free GPU resources and integrates with Google Drive
for file storage and sharing. We’ll leverage Colab as our prototyping
environment going forward.

Stable diffusion transformer

We begin with a pre-trained stable diffusion model, a text-to-image latent
diffusion model created by researchers and engineers from CompVis, Stability
AI, and LAION (Patil et al., 2022). The diffusion process is used to draw
samples from complex, high-dimensional distributions, and when it interacts
with the text embeddings, it creates a powerful conditional image synthesis
model.

The term “stable” in this context refers to the fact that during training, a model
maintains certain properties that stabilize the learning process. Stable diffusion
models offer rich potential to create entirely new samples from a given data
distribution, based on text prompts.

Again, for our practical example, we will Google Colab to alleviate a lot of initial
setups. Colab also provides all of the computational resources needed to begin
experimenting right away. We start by installing some libraries, and with three
simple functions, we will build out a minimal StableDiffusionPipeline using a well-
established open-source implementation of the stable diffusion method.

First, let’s navigate to our pre-configured Python environment, Google Colab,
and install the diffusers open-source library, which will provide most of the key
underlying components we need for our experiment.

In the first cell, we install all dependencies using the following bash command.
Note the exclamation point at the beginning of the line, which tells our
environment to reach down to its underlying process and install the packages
we need:



 

!pip install pytorch-fid torch diffusers clip transformers accelerate

Next, we import the libraries we’ve just installed to make them available to our
Python program:

 

from typing import List 

import torch 

import matplotlib.pyplot as plt 

from diffusers import StableDiffusionPipeline, DDPMScheduler

Now, we’re ready for our three functions, which will execute the three tasks –
loading the pre-trained model, generating the images based on prompting, and
rendering the images:

 

def load_model(model_id: str) -> StableDiffusionPipeline: 

    """Load model with provided model_id.""" 

    return StableDiffusionPipeline.from_pretrained( 

        model_id,  

        torch_dtype=torch.float16,  

        revision="fp16",  

        use_auth_token=False 

    ).to("cuda") 

def generate_images( 

    pipe: StableDiffusionPipeline,  

    prompts: List[str] 

) -> torch.Tensor: 

    """Generate images based on provided prompts.""" 

    with torch.autocast("cuda"): 

        images = pipe(prompts).images 

    return images 

def render_images(images: torch.Tensor): 

    """Plot the generated images.""" 

    plt.figure(figsize=(10, 5)) 

    for i, img in enumerate(images): 

        plt.subplot(1, 2, i + 1) 

        plt.imshow(img) 

        plt.axis("off") 

    plt.show()

In summary, load_model loads a machine learning model identified by model_id
onto a GPU for faster processing. The generate_images function takes this model
and a list of prompts to create our images. Within this function, you will notice
torch.autocast("cuda"), which is a special command that allows PyTorch (our
underlying machine learning library) to perform operations faster while
maintaining accuracy. Lastly, the render_images function displays these images in
a simple grid format, making use of the matplotlib visualization library to render
our output.

With our functions defined, we select our model version, define our pipeline,
and execute our image generation process:

 

# Execution 



model_id = "CompVis/stable-diffusion-v1-4" 

prompts = [ 

    "A hyper-realistic photo of a friendly lion", 

    "A stylized oil painting of a NYC Brownstone" 

] 

pipe = load_model(model_id) 

images = generate_images(pipe, prompts) 

render_images(images)

The output in Figure 2.1 is a vivid example of the imaginativeness and
creativity we typically expect from human art, generated entirely by the
diffusion process. Except, how do we measure whether the model was faithful
to the text provided?

Figure 2.1: Output for the prompts “A hyper-realistic photo of a friendly lion” (left) and “A stylized oil

painting of a NYC Brownstone” (right)

The next step is to evaluate the quality and relevance of our generated images
in relation to the prompts. This is where CLIP comes into play. CLIP is designed
to measure the alignment between text and images by analyzing their semantic
similarities, giving us a true quantitative measure of the fidelity of our synthetic
images to the prompts.

Scoring with the CLIP model

CLIP is trained to understand the relationship between text and images by
learning to place similar images and text near each other in a shared space.
When evaluating a generated image, CLIP checks how closely the image aligns



with the textual description provided. A higher score indicates a better match,
meaning the image accurately represents the text. Conversely, a lower score
suggests a deviation from the text, indicating a lesser quality or fidelity to the
prompt, providing a quantitative measure of how well the generated image
adheres to the intended description.

Again, we will import the necessary libraries:
 

from typing import List, Tuple 

from PIL import Image 

import requests 

from transformers import CLIPProcessor, CLIPModel 

import torch

We begin by loading the CLIP model, processor, and necessary parameters:
 

# Constants 

CLIP_REPO = "openai/clip-vit-base-patch32" 

def load_model_and_processor( 

    model_name: str 

) -> Tuple[CLIPModel, CLIPProcessor]: 

    """ 

    Loads the CLIP model and processor. 

    """ 

    model = CLIPModel.from_pretrained(model_name) 

    processor = CLIPProcessor.from_pretrained(model_name) 

    return model, processor

Next, we define a processing function to adjust the textual prompts and images,
ensuring that they are in the correct format for CLIP inference:

 

def process_inputs( 

    processor: CLIPProcessor, prompts: List[str], 

    images: List[Image.Image]) -> dict: 

""" 

Processes the inputs using the CLIP processor. 

""" 

    return processor(text=prompts, images=images, 

        return_tensors="pt", padding=True)

In this step, we initiate the evaluation process by inputting the images and
textual prompts into the CLIP model. This is done in parallel across multiple
devices to optimize performance. The model then computes similarity scores,
known as logits, for each image-text pair. These scores indicate how well each
image corresponds to the text prompts. To interpret these scores more
intuitively, we convert them into probabilities, which indicate the likelihood
that an image aligns with any of the given prompts:

 

def get_probabilities( 

    model: CLIPModel, inputs: dict) -> torch.Tensor: 

""" 

Computes the probabilities using the CLIP model. 



""" 

    outputs = model(**inputs) 

    logits = outputs.logits_per_image 

    # Define temperature - higher temperature will make the distribution more uniform. 

    T = 10 

    # Apply temperature to the logits 

    temp_adjusted_logits = logits / T 

    probs = torch.nn.functional.softmax( 

        temp_adjusted_logits, dim=1) 

    return probs

Lastly, we display the images along with their scores, visually representing how
well each image adheres to the provided prompts:

 

def display_images_with_scores( 

    images: List[Image.Image], scores: torch.Tensor) -> None: 

""" 

Displays the images alongside their scores. 

""" 

    # Set print options for readability 

    torch.set_printoptions(precision=2, sci_mode=False) 

    for i, image in enumerate(images): 

        print(f"Image {i + 1}:") 

        display(image) 

        print(f"Scores: {scores[i, :]}") 

        print()

With everything detailed, let’s execute the pipeline as follows:
 

# Load CLIP model 

model, processor = load_model_and_processor(CLIP_REPO) 

# Process image and text inputs together 

inputs = process_inputs(processor, prompts, images) 

# Extract the probabilities 

probs = get_probabilities(model, inputs) 

# Display each image with corresponding scores 

display_images_with_scores(images, probs)

We now have scores for each of our synthetic images that quantify the fidelity
of the synthetic image to the text provided, based on the CLIP model, which
interprets both image and text data as one combined mathematical
representation (or geometric space) and can measure their similarity.



Figure 2.2: CLIP scores

For our “friendly lion,” we computed scores of 83% and 17% for each prompt,
which we can interpret as an 83% likelihood that the image aligns with the first
prompt.

In practical scenarios, this metric can be applied across various domains:

Content moderation: Automatically moderating or flagging inappropriate content by comparing
images to a set of predefined descriptive prompts

Image retrieval: Facilitating refined image searches by matching textual queries to a vast database
of images, hence narrowing down the search to the most relevant visuals

Image captioning: Assisting in generating accurate captions for images by identifying the most
relevant descriptive prompts

Advertising: Tailoring advertisements based on the content of images on a web page to enhance user
engagement

Accessibility: Enhancing accessibility features by providing accurate descriptions of images for
individuals with visual impairments

This evaluation method not only speeds up processes that would otherwise
require manual inspection but also lends itself to many applications that could
benefit from a deeper understanding and contextual analysis of visual data. We
will revisit the CLIP evaluation in Chapter 4, where we simulate a real-world
scenario to determine the quality and appropriateness of automatically
generated captions for a set of product images.



Summary

This chapter explored the theoretical underpinnings and real-world applications
of leading GAI techniques, including GANs, diffusion models, and transformers.
We examined their unique strengths, including GANs’ ability to synthesize
highly realistic images, diffusion models’ elegant image generation process,
and transformers’ exceptional language generation capabilities.

Using a cloud-based Python environment, we implemented these models to
generate compelling images and evaluated their output quality using CLIP. We
analyzed how techniques such as progressive growing and classifier guidance
enhanced output fidelity over time. We also considered societal impacts, urging
developers to address potential harm through transparency and ethical
practices.

Generative methods have unlocked remarkable creative potential, but
thoughtful oversight is critical as capabilities advance. We can guide these
technologies toward broadly beneficial outcomes by grounding ourselves in
core methodologies, scrutinizing their limitations, and considering downstream
uses. The path ahead will require continued research and ethical reflection to
unlock AI’s creative promise while mitigating risks.
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3

Tracing the Foundations of Natural Language

Processing and the Impact of the Transformer

The transformer architecture is a key advancement that underpins most
modern generative language models. Since its introduction in 2017, it has
become a fundamental part of natural language processing (NLP), enabling
models such as Generative Pre-trained Transformer 4 (GPT-4) and Claude
to advance text generation capabilities significantly. A deep understanding of
the transformer architecture is crucial for grasping the mechanics of modern
large language models (LLMs).

In the previous chapter, we explored generative modeling techniques, including
generative adversarial networks (GANs), diffusion models, and
autoregressive (AR) transformers. We discussed how Transformers can be
leveraged to generate images from text. However, transformers are more than
just one generative approach among many; they form the basis for nearly all
state-of-the-art generative language models.

In this chapter, we’ll cover the evolution of NLP that ultimately led to the
advent of the transformer architecture. We cannot cover all the critical steps
forward, but we will attempt to cover major milestones, starting with early
linguistic analysis techniques and statistical language modeling, followed by
advancements in recurrent neural networks (RNNs) and convolutional

neural networks (CNNs) that highlight the potential of deep learning (DL)
for NLP. Our main objective will be to introduce the transformer—its basis in
DL, its self-attention architecture, and its rapid evolution, which has led to
LLMs and this phenomenon we call generative AI (GenAI).

Understanding the origins and mechanics of the transformer architecture is
important for recognizing its groundbreaking impact. The principles and
modeling capabilities introduced by transformers are carried forward by all
modern language models built upon this framework. We will build our intuition
for Transformers through historical context and hands-on implementation, as
this foundational understanding is key to understanding the future of GenAI.



Early approaches in NLP

Before the widespread use of neural networks (NNs) in language processing,
NLP was largely grounded in methods that counted words. Two particularly
notable techniques were count vectors and Term Frequency-Inverse

Document Frequency (TF-IDF). In essence, count vectors tallied up how
often each word appeared in a document. Building on this, Dadgar et al.
applied the TF-IDF algorithm (historically used for information retrieval) to text
classification in 2016. This method assigned weights to words based on their
significance in one document relative to their occurrence across a collection of
documents. These count-based methods were successful for tasks such as
searching and categorizing. However, they presented a key limitation in that
they could not capture the semantic relationships between words, meaning
they could not interpret the nuanced meanings of words in context. This
challenge paved the way for exploring NNs, offering a deeper and more
nuanced way to understand and represent text.

Advent of neural language models

In 2003, Yoshua Bengio’s team at the University of Montreal introduced the
Neural Network Language Model (NNLM), a novel approach to language
technology. The NNLM was designed to predict the next word in a sequence
based on prior words using a particular type of neural network (NN). The
design prominently featured hidden layers that learned word embeddings,
which are compact vector representations capturing the core semantic
meanings of words. This aspect was absent in count-based approaches.
However, the NNLM was still limited in its ability to interpret longer sequences
and handle large vocabularies. Despite these limitations, the NNLM sparked
widespread exploration of NNs in language modeling.

The introduction of the NNLM highlighted the potential of NNs in language
processing, particularly using word embeddings. Yet, its limitations with long
sequences and large vocabulary signaled the need for further research.

Distributed representations



Following the inception of the NNLM, NLP research was propelled toward
crafting high-quality word vector representations. These representations could
be initially learned from extensive sets of unlabeled text data and later applied
to downstream models for various tasks. The period saw the emergence of two
prominent methods: Word2Vec (introduced by Mikolov et al., 2013) and
Global Vectors (GloVe, introduced by Pennington et al., 2014). These methods
applied distributed representation to craft high-quality word vector
representations. Distributed representation portrays items such as words not
as unique identifiers but as sets of continuous values or vectors. In these
vectors, each value corresponds to a specific feature or characteristic of the
item. Unlike traditional representations, where each item has a unique symbol,
distributed representations allow these items to share features with others,
enabling a more intelligent capture of underlying patterns in the data.

Let us elucidate this concept a bit further. Suppose we represent words based
on two features: Formality and Positivity. We might have vectors such as the
following:

Formal: [1, 0]

Happy: [0, 1]

Cheerful: [0, 1]

In this example, each element in the vector corresponds to one of these
features. In the vector for Formal, the 1 element under Formality indicates that
the word is formal, while the 0 element under Positivity indicates neutrality in
terms of positivity. Similarly, for Happy and Cheerful, the 1 element under
Positivity indicates that these words have a positive connotation. This way,
distributed representation captures the essence of words through vectors,
allowing for shared features among different words to understand underlying
patterns in data.

Word2Vec employs a relatively straightforward approach where NNs are used
to predict the surrounding words for each target word in a dataset. Through
this process, the NN ascertains values or “weights” for each target word. These
weights form a vector for each word in a continuous vector space—a
mathematical space wherein each point represents a possible value a vector
can take. In the context of NLP, each dimension of this space corresponds to a



feature, and the position of a word in this space captures its semantic or
linguistic relationships to other words.

These vectors form a feature-based representation—a type of representation
where each dimension represents a different feature that contributes to the
word’s meaning. Unlike a symbolic representation, where each word is
represented as a unique symbol, a feature-based representation captures the
semantic essence of words in terms of shared features.

On the other hand, GloVe adopts a different approach. It analyzes the global

co-occurrence statistics—a count of how often words appear together in a
large text corpus. GloVe learns vector representations that capture the
relationships between words by analyzing these counts across the entire
corpus. This method also results in a distributed representation of words in a
continuous vector space, capturing semantic similarity—a measure of the
degree to which two words are similar in meaning. In a continuous vector
space, we can think about semantic similarity as the simple geometric
proximity of vectors representing words.

To further illustrate, suppose we have a tiny corpus of text containing the
following sentences:

“Coffee is hot.”

“Ice cream is cold.”

From this corpus, GloVe would notice that “coffee” co-occurs with “hot” and
“ice cream” co-occurs with “cold.” Through its optimization process, it would
aim to create vectors for these words in a way that reflects these relationships.
In this oversimplified example, GloVe might produce a vector such as this:

Coffee: [1, 0]

Hot: [0.9, 0]

Ice Cream: [0, 1]

Cold: [0, 0.9]

Here, the closeness of the vectors for “coffee” and “hot” (and, similarly, “ice

cream” and “cold”) in this space reflects the co-occurrence relationships
observed in the corpus. The vector difference between “coffee” and “hot” might
resemble the vector difference between “ice cream” and “cold,” capturing the



contrasting temperature relationships in a geometric way within the vector
space.

Both Word2Vec and GloVe excel at encapsulating relevant semantic
information about words to represent an efficient encoding—a compact way of
representing information that captures the essential features necessary for a
task while reducing the dimensionality and complexity of the data.

These methodologies in creating meaningful vector representations served as a
step toward the adoption of transfer learning in NLP. The vectors provide a
shared semantic foundation that facilitates the transfer of learned relationships
across varying tasks.

Transfer Learning

GloVe and other methods of deriving distributed representations paved the way
for transfer learning in NLP. By creating rich vector representations of words
that encapsulate semantic relationships, these methods provided a foundational
understanding of text. The vectors serve as a shared base of knowledge that
can be applied to different tasks. When a model, initially trained on one task, is
utilized for another, the pre-learned vector representations aid in preserving
the semantic understanding, thereby reducing the data or training needed for
the new task. This practice of transferring acquired knowledge has become
fundamental for efficiently addressing a range of NLP tasks.

Consider a model trained to understand sentiments (positive or negative) in
movie reviews. Through training, this model has learned distributed
representations of words, capturing sentiment-related nuances. Now, suppose
there is a new task: understanding sentiments in product reviews. Instead of
training a new model from the beginning, transfer learning allows us to use the
distributed representations from the movie review task to initiate training for
the product review task. This could lead to quicker training and better
performance, especially with limited data for the product review task.

The effectiveness of transfer learning, bolstered by distributed representations
from methods such as GloVe, highlighted the potential of leveraging pre-
existing knowledge for new tasks. It was a precursor to the integration of NNs
in NLP, highlighting the benefits of utilizing learned representations across



tasks. The advent of NNs in NLP brought about models capable of learning
even richer representations, further amplifying the impact and scope of
transfer learning.

Advent of NNs in NLP

The advent of NNs in NLP marked a monumental shift in the field’s capability
to understand and process language. Building upon the groundwork laid by
methodologies such as Word2Vec, GloVe, and the practice of transfer learning,
NNs introduced a higher level of abstraction and learning capacity. Unlike
previous methods that often relied on hand-crafted features, NNs could
automatically learn intricate patterns and relationships from data. This ability
to learn from data propelled NLP into a new era where models could achieve
unprecedented levels of performance across a myriad of language-related
tasks. The emergence of architectures such as CNNs and RNNs, followed by
the revolutionary transformer architecture, showcased the remarkable
versatility and efficacy of NNs in tackling complex NLP challenges. This
transition not only accelerated the pace of innovation but also expanded the
horizon of what could be achieved in understanding human language
computationally.

Language modeling with RNNs

Despite how well these distributed word vectors excelled at encoding local
semantic relationships, modeling long-range dependencies would require a
more sophisticated network architecture. This led to the use of RNNs. RNNs
(originally introduced by Elman in 1990) are a type of NN architecture that
processes data sequences by iterating through each element of the sequence
while maintaining a dynamic internal state that captures information about the
previous elements. Unlike traditional feedforward networks (FNNs) that
processed each input independently, RNNs introduced iterations that allowed
information to be passed from one step in the sequence to the next, enabling
them to capture temporal dependencies in data. The iterative processing and
dynamic updating in NNs enable them to learn and represent relationships
within the text. These networks can capture contextual connections and
interdependencies across sentences or even entire documents.



However, standard RNNs had technical limitations when dealing with long
sequences. This led to the development of long short-term memory (LSTM)
networks. LSTMs were first introduced by Hochreiter and Schmidhuber in
1997. They were a special class of RNNs designed to address the vanishing

gradient problem, which is the challenge where the network cannot learn from
earlier parts of a sequence as the sequence gets longer. LSTMs applied a
unique gating architecture to control the flow of information within the
network, enabling them to maintain and access information over long
sequences without suffering from the vanishing gradient problem.

The name “long short-term memory” refers to the network’s ability to keep
track of information over both short and long sequences of data:

Short-term: LSTMs can remember recent information, which is useful for understanding the current
context. For example, in language modeling, knowing the last few words can be crucial for predicting
the next word. Consider a phrase such as, “The cat, which already ate a lot, was not hungry.” As the
LSTM processes the text, when it reaches the word “not,” the recent information that the cat “ate a
lot” is crucial to predict the next word, “hungry,” accurately.

Long-term: Unlike standard RNNs, LSTMs are also capable of retaining information from many steps
back in the sequence, which is particularly useful for long-range dependencies, where a piece of
information early in a sentence could be important for understanding a word much later in the
sequence. In the same phrase, the information that “The cat” is the subject of the sentence is
introduced early on. This information is crucial later to understand who “was not hungry” as it
processes the later part of the sentence.

The M or memory in LSTMs is maintained through a unique architecture that
employs three gating mechanisms—input, output, and forget gates. These gates
control the flow of information within the network, deciding what information
should be kept, discarded, or used at each step in the sequence, enabling
LSTMs to maintain and access information over long sequences. Effectively,
these gates and the network state allowed LTSMs to carry the “memory” across
time steps, ensuring that valuable information was retained throughout the
processing of the sequence.

Ultimately, LSTMs obtained state-of-the-art results on many language modeling
and text classification benchmarks. They became the dominant NN architecture
for NLP tasks due to their ability to capture short- and long-range contextual
relationships.

The success of LSTMs demonstrated the potential of neural architectures in
capturing the complex relationships inherent in language, significantly



advancing the field of NLP. However, the continuous pursuit of more efficient
and effective models led the community toward exploring other NN
architectures.

Rise of CNNs

Around 2014, the NLP domain witnessed a rise in the popularity of CNNs for
tackling NLP tasks, a notable shift led by Yoon Kim. CNNs (originally brought
forward by LeCun et al. for image recognition) operate based on convolutional
layers that scan the input by moving a filter (or kernel) across the input data, at
each position calculating the dot product of the filter’s weights and the input
data. In NLP, these layers work over local n-gram windows (consecutive
sequences of n words) to identify patterns or features, such as specific
sequences of words or characters in the text. Employing convolutional layers
over local n-gram windows, CNNs scan and analyze the data to detect initial
patterns or features. Following this, pooling layers are used to reduce the
dimensionality of the data, which helps in both reducing computational
complexity and focusing on the most salient features identified by the
convolutional layers.

Combining convolutional and pooling layers, CNNs can extract hierarchical
features. These features represent information at different levels of abstraction
by combining simpler, lower-level features to form more complex, higher-level
features. In NLP, this process might start with detecting basic patterns such as
common word pairs or phrases in the initial layers, progressing to recognizing
more abstract concepts such as semantic relationships in the higher layers.

For comparison, we again consider a scenario where a CNN is employed to
analyze and categorize customer reviews into positive, negative, or neutral
sentiments:

Lower-level features (initial layers): The CNN might identify basic patterns such as common word
pairs or phrases in the initial layers. For instance, it might recognize phrases such as “great service,”
“terrible experience,” or “not happy.”

Intermediate-level features (middle layers): As data progresses through the network, middle
layers might start recognizing more complex patterns, such as negations (“not good”) or contrasts
(“good but expensive”).

Higher-level features (later layers): The CNN could identify abstract concepts such as overall
sentiment in the later layers. For instance, it might deduce a positive sentiment from phrases such as



“excellent service” or “loved the ambiance” and a negative sentiment from phrases such as “worst
experience” or “terrible food.”

In this way, CNNs inherently learn higher-level abstract representations of text.
Although they lack the sequential processing characteristic of RNNs, they offer
a computational advantage due to their inherent parallelism or ability to
process multiple parts of the data simultaneously. Unlike RNNs, which process
sequences iteratively and require the previous step to be completed before
proceeding to the next, CNNs can process various parts of the input data in
parallel, significantly speeding up training times.

CNNs, while efficient, have a limitation in their convolution operation, which
only processes local data from smaller or nearby regions, thereby missing
relationships across more significant portions of the entire input data, referred
to as global information. This gave rise to attention-augmented convolutional
networks that integrate self-attention with convolutions to address this
limitation. Self-attention, initially used in sequence and generative modeling,
was adapted for visual tasks such as image classification, enabling the network
to process and capture relationships across the entire input data. However,
attention augmentation, which combines convolutions and self-attention,
yielded the best results. This method retained the computational efficiency of
CNNs and captured global information, marking an advancement in image
classification and object detection tasks. We will discuss self-attention in detail
later as it became a critical component of the transformer.

The ability of CNNs to process multiple parts of data simultaneously marked a
significant advancement in computational efficiency, paving the way for further
innovations in NN architectures for NLP. As the field progressed, a pivotal shift
occurred with the advent of attention-augmented NNs, introducing a new
paradigm in how models handle sequential data.

The emergence of the Transformer in advanced

language models

In 2017, inspired by the capabilities of CNNs and the innovative application of
attention mechanisms, Vaswani et al. introduced the transformer architecture
in the seminal paper Attention is All You Need. The original transformer applied
several novel methods, particularly emphasizing the instrumental impact of



attention. It employed a self-attention mechanism, allowing each element in
the input sequence to focus on distinct parts of the sequence, capturing
dependencies regardless of their positions in a structured manner. The term
“self” in “self-attention” refers to how the attention mechanism is applied to the
input sequence itself, meaning each element in the sequence is compared to
every other element to determine its attention scores.

To truly appreciate how the transformer architecture works, we can describe
how the components in its architecture play a role in handling a particular task.
Suppose we need our transformer to translate the English sentence “Hello, how

are you?” into French: “Bonjour, comment ça va?” Let us walk through this step
by step to examine and elucidate how the transformer might accomplish this
task. For now, we will describe each step in detail and later implement the full
architecture using Python.

Components of the transformer architecture

Before diving into how the transformer model fulfills our translation task, we
need to understand the steps involved. The complete architecture is quite
dense, so we will break it down into small, logical, and digestible components.

First, we discuss the two components central to the architectural design of the
transformer model: the encoder and decoder stacks. We will also explain how
data flows within these layer stacks, including the concept of tokens, and how
relationships between tokens are captured and refined using critical techniques
such as self-attention and FFNs.

Then, we transition into the training process of the transformer model. Here,
we review fundamental concepts such as batches, masking, the training loop,
data preparation, optimizer selection, and strategies to improve performance.
We will explain how the transformer optimizes performance using a loss
function, which is crucial in shaping how the model learns to translate.

Following the training process, we discuss model inference, which is how our
trained model generates translations. This section points out the order in which
individual model components operate during translation and emphasizes the
importance of each step.



As discussed, central to the transformer are two vital components, often called
the encoder stack and the decoder stack.

Encoder and decoder stacks

In the context of the transformer model, stacks reference a hierarchical
arrangement of layers. Each layer in this context is, in fact, an NN layer like
the layers we come across in classical DL models. While a layer is a level in the
model where specific computational operations occur, a stack refers to multiple
such layers arranged consecutively.

Encoder stack

Consider our example sentence “Hello, how are you?”. We first convert it into
tokens. Each token typically represents a word. In the case of our example
sentence, tokenization would break it down into separate tokens, resulting in
the following:

[“Hello”, “,”, “how”, “are”, “you”, “?”]

Here, each word or punctuation represents a distinct token. These tokens are
then transformed into numerical representations, also known as embeddings.
These embedding vectors capture the semantic meaning and context of the
words, enabling the model to understand and process the input data effectively.
The embeddings aid in capturing complex relationships and contexts from the
original English input sentence through this series of transformations across
layers.

This stack comprises multiple layers, where each layer applies self-attention
and FFN computations on its input data (which we will describe in detail
shortly). The embeddings iteratively capture complex relationships and context
from the original English input sentence through this series of transformations
across layers.

Decoder stack

Once the encoder completes its task, the output vectors—or the embeddings of
the input sentence that hold its contextual information—are passed on to the
decoder. Within the decoder stack, multiple layers work sequentially to
generate a French translation from the embeddings.



The process begins by converting the first embedding into the French phrase
“Bonjour.” The subsequent layer uses the following embedding and context
from the previously generated words to predict the next word in the French
sentence. This process is repeated through all the layers in the stack, each
using input embeddings and generated words to define and refine the
translation.

The decoder stack progressively builds (or decodes) the translated sentence
through this iterative process, arriving at “Bonjour, comment ça va?”.

With an overall understanding of the encoder-decoder structure, our next step
is unraveling the intricate operations within each stack. However, before
delving into the self-attention mechanism and FFNs, there is one vital
component we need to understand — positional encoding. Positional encoding
is paramount to the transformer’s performance because it gives the
transformer model a sense of the order of words, something subsequent
operations in the stack lack.

Positional encoding

Every word in a sentence holds two types of information — its meaning and its
role in the larger context of the sentence. The contextual role often stems from
a word’s position in the arrangement of words. A sentence such as “Hello, how

are you?” makes sense because the words are in a specific order. Change that
to “Are you, how hello?” and the meaning becomes unclear.

Consequently, Vaswani et al. introduced positional encoding to ensure that
the transformer encodes each word with additional data about its position in
the sentence. Positional encodings are computed using a blend of sine and
cosine functions across different frequencies, which generate a unique set of
values for each position in a sequence. These values are then added to the
original embeddings of the tokens, providing a way for the model to capture the
order of words. These enriched embeddings are then ready to be processed by
the self-attention mechanism in the subsequent layers of the transformer
model.

Self-attention mechanism



As each token of our input sentence “Hello, how are you?” passes through each
layer of the encoder stack, it undergoes a transformation via the self-attention
mechanism.

As the name suggests, the self-attention mechanism allows each token (word)
to attend to (or focus on) other vital tokens to understand the full context
within the sentence. Before encoding a particular word, this attention
mechanism interprets the relationship between each word and the others in the
sequence. It then assigns distinct attention scores to different words based on
their relevance to the current word being processed.

Consider again our input sentence “Hello, how are you?”. When the self-
attention mechanism is processing the last word, “you,” it does not just focus
on “you.” Instead, it takes into consideration the entire sentence: it looks at
“Hello,” glances over “how,” reflects on “are,” and, of course, focuses on “you.”

In doing so, it assigns various levels of attention to each word. You can
visualize attention (Figure 3.1) as lines connecting “you” to every other word.
The line to “Hello” might be thick, indicating a lot of attention, representing the
influence of “Hello” on the encoding of “you.” The line connecting “you” and
“how” might be thinner, suggesting less attention given to “how.” The lines to
“are” and “you” would have other thicknesses based on how they help in
providing context to “you”:

Figure 3.1: Self-attention mechanism

This way, when encoding “you,” a weighted mix of the entire sentence is
considered, not just the single word. And these weights defining the mix are
what we refer to as attention scores.

The self-attention mechanism is implemented through a few steps:

1. Initially, each input word is represented as a vector, which we obtain from the word embedding.



2. These vectors are then mapped to new vectors called query, key, and value vectors through learned
transformations.

3. An attention score for each word is then computed by taking the dot product of the query vector of the
word with the key vector of every other word, followed by a SoftMax operation (which we will
describe later).

4. These scores indicate how much focus to place on other parts of the input sentence for each word as it
is encoded.

5. Finally, a weighted sum of the value vectors is computed based on these scores to give us our final
output vectors, or the self-attention outputs.

It is important to note that this computation is done for each word in the
sentence. This ensures a comprehensive understanding of the context in the
sentence, considering multiple parts of the sentence at once. This concept set
the transformer apart from nearly every model that came before it.

Instead of running the self-attention mechanism once (or “single-head”
attention), the transformer replicates the self-attention mechanism multiple
times in parallel. Each replica or head operates on the same input but has its
own independent set of learned parameters to compute the attention scores.
This allows each head to learn different contextual relationships between
words. This parallel process is known as multi-head attention (MHA).

Imagine our sentence “Hello, how are you?” again. One head might concentrate
on how “Hello” relates to “you,” whereas another head might focus more on
how “how” relates to “you.” Each head has its own set of query, key, and value
weights, further enabling them to specialize and learn different things. The
outputs of these multiple heads are then concatenated and transformed to
produce final values passed onto the next layer in the stack.

This multi-head approach allows the model to capture a wider range of
information from the same input words. It is like having several perspectives on
the same sentence, each providing unique insights.

So far, for our input sentence “Hello, how are you?”, we have converted each
word into token representations, which are then contextualized using the MHA
mechanism. Through parallel self-attention, our transformer can consider the
full range of interactions between each word and every other word in the
sentence. We now have a set of diverse and context-enriched word
representations, each containing a textured understanding of a word’s role in
the sentence. However, this contextual understanding contained within the



attention mechanism is just one component of the information processing in our
transformer model. Next comes another layer of interpretation through
position-wise FFNs. The FFN will add further nuances to these representations,
making them more informative and valuable for our translation task.

In the next section, we discuss a vital aspect of the transformer’s training
sequence: masking. Specifically, the transformer applies causal (or look-ahead)
masking during the decoder self-attention to ensure that each output token
prediction depends only on previously generated tokens, not future unknown
tokens.

Masking

The transformer applies two types of masking during training. The first is a
preprocessing step to ensure input sentences are of the same length, which
enables efficient batch computation. The second is look-ahead (or causal)
masking, which allows the model to selectively ignore future tokens in a
sequence. This type of masking occurs in the self-attention mechanism in the
decoder and prevents the model from peeking ahead at future tokens in the
sequence. For example, when translating the word “Hello” to French, look-
ahead masking ensures that the model does not have access to the subsequent
words “how,” “are,” or “you.” This way, the model learns to generate
translations based on the current and preceding words, adhering to a natural
progression in translation tasks, mimicking that of human translation.

With a clearer understanding of how data is prepared and masked for training,
we now transition to another significant aspect of the training process:
hyperparameters. Unlike parameters learned from the data, hyperparameters
are configurations set before training to control the model optimization process
and guide the learning journey. The following section will explore various
hyperparameters and their roles during training.

SoftMax

To understand the role of the FFN, we can describe its two primary
components—linear transformations and an activation function:

Linear transformations are essentially matrix multiplications. Think of them as tools that reshape or
tweak the input data. In the FFN, these transformations occur twice, where two different weights (or
matrices) are used.



A rectified linear unit (ReLU) function is applied between these two transformations. The role of the
ReLU function is to introduce non-linearity in the model. Simply put, the ReLU function allows the
model to capture patterns within the input data that are not strictly proportional, i.e., non-linear,
which is typical of natural language (NL) data.

The FFN is called position-wise because it treats each word in the sentence
separately (position by position), regardless of the sequence. This contrasts
with the self-attention mechanism, which considers the entire sequence at
once.

So, let us attempt to visualize the process: Imagine our word “Hello” arriving
here after going through the self-attention mechanism. It carries with it
information about its own identity mixed with contextual references to “how,”
“are,” and “you.” This integrated information resides within a vector that
characterizes “Hello.”

When “Hello” enters the FFN, picture it as a tunnel with two gates. At the first
gate (or linear layer), “Hello” is transformed by a matrix multiplication
operation, changing its representation. Afterward, it encounters the ReLU
function—which makes the representation non-linear.

After this, “Hello” passes through a second gate (another linear layer),
emerging on the other side transformed yet again. The core identity of “Hello”
remains but is now imbued with even more context, carefully calibrated and
adjusted by the FFN.

Once the input passes through the gates, there is one additional step. The
transformed vector still must be converted into a form that can be interpreted
as a prediction for our final translation task.

This brings us to using the SoftMax function, the final transformation within
the transformer’s decoder. After the vectors pass through the FFN, they are
further processed through a final linear layer. The result is then fed into a
SoftMax function.

SoftMax serves as a mechanism for converting the output of our model into a
form that can be interpreted as probabilities. In essence, the SoftMax function
will take the output from our final linear layer (which could be any set of real
numbers) and transform it into a distribution of probabilities, representing the
likelihood of each word being the next word in our output sequence. For
example, if our target vocabulary includes “Bonjour,” “Hola,” “Hello,” and



“Hallo,” the SoftMax function will assign each of these words a probability, and
the word with the highest probability will be chosen as the output translation
for the word “Hello.” We can illustrate with this oversimplified representation
of the output probabilities:

[ Bonjour: 0.4, Hola: 0.3, Hello: 0.2, Hallo: 0.1 ]

Figure 3.2 shows a more complete (albeit oversimplified) view of the flow of
information through the architecture.

Figure 3.2: A simplified illustration of the transformer

Now that we’ve introduced the architectural components of the transformer,
we are poised to understand how its components work together.

Sequence-to-sequence learning

The components of a transformer come together to learn from data using a
mechanism known as sequence-to-sequence (Seq2Seq) learning, a subset of
supervised learning (SL). Recall that SL is a technique that uses labeled data



to train models to predict outcomes accurately. In Seq2Seq learning, we
provide the transformer with training data that comprises examples of input
and corresponding correct output, which, in this case, are correct translations.
Seq2Seq learning is particularly well suited for tasks such as machine
translation where both the input and output are sequences of words.

The very first step in the learning process is to convert each word in the phrase
into tokens, which are then transformed into numerical embeddings. These
embeddings carry the semantic essence of each word. Positional encodings are
computed and added to these embeddings to imbue them with positional
awareness.

As these enriched embeddings traverse through the encoder stack, within each
layer, the self-attention mechanism refines the embeddings by aggregating
contextual information from the entire phrase. Following self-attention, each
word’s embedding undergoes further transformation in the position-wise FFNs,
adjusting the embeddings to capture even more complex relationships.

Upon exiting the encoder, the embeddings now hold a rich mixture of semantic
and contextual information. They are passed onto the decoder stack, which
aims to translate the phrase into another language (that is, the target
sequence). As with the encoder, each layer in the decoder also employs self-
attention and position-wise FFNs, but with an additional layer of cross-attention
that interacts with the encoder’s outputs. This interaction helps align the input
and output phrases, a crucial aspect of translation.

As the embeddings move through the decoder layers, they are progressively
refined to represent the translated phrase that the model will predict. The final
layer of the decoder processes the embeddings through a linear transformation
and SoftMax function to produce a probability distribution over the target
vocabulary. This distribution defines the model’s predicted likelihood for each
potential next token at each step. The decoder then samples from this
distribution to select the token with the highest predicted probability as its next
output. By iteratively sampling the most likely next tokens according to the
predicted distributions, the decoder can autoregressively generate the full
translated output sequence token by token.

However, for the transformer to reliably sample from the predicted next-token
distributions to generate high-quality translations, it must progressively learn



by iterating over thousands of examples of input-output pairs. In the next
section, we explore model training in further detail.

Model training

As discussed, the primary goal of the training phase is to refine the model’s
parameters to facilitate accurate translation from one language to another. But
what does the refinement of parameters entail, and why is it pivotal?

Parameters are internal variables that the model utilizes to generate
translations. Initially, these parameters are assigned random values, which are
adjusted with each training iteration. Again, the model is provided with training
data that comprises thousands of examples of input data and corresponding
correct output, which, in this case, is the correct translation. It then compares
its predicted output tokens to the correct (or actual) target sequences using an
error (or loss) function.

Based on the loss, the model updates its parameters, gradually improving its
ability to choose the correct item in the sequence at each step of decoding. This
slowly refines the probability distributions.

Over thousands of training iterations, the model learns associations between
source and target languages. Eventually, it acquires enough knowledge to
decode coherent, human-like translations from unseen inputs by relying on
patterns discovered during training. Therefore, training drives the model’s
ability to produce accurate target sequences from the predicted vocabulary
distributions.

After training on sufficient translation pairs, the transformer reaches reliable
translation performance. The trained model can then take in new input
sequences and output translated sequences by generalizing to that new data.

For instance, with our example sentence “Hello, how are you?” and its French
translation “Bonjour, comment ça va?”, the English sentence serves as the
input, and the French sentence serves as the target output. The training data
comprises many translated pairs. Each time the model processes a batch of
data, it generates predictions for the translation, compares them to the actual
target translations, and then adjusts its parameters to reduce the discrepancy
(or minimize the loss) between the predicted and actual translations. This is



repeated with numerous batches of data until the model’s translations are
sufficiently accurate.

Hyperparameters

Again, unlike parameters, which the model learns from the training data,
hyperparameters are preset configurations that govern the training process
and the structure of the model. They are a crucial part of setting up a
successful training run.

Some key hyperparameters in the context of transformer models include the
following:

Learning rate: This value determines the step size at which the optimizer updates the model
parameters. A higher learning rate could speed up the training but may overshoot the optimal
solution. A lower learning rate may result in a more precise convergence to the optimal solution,
albeit at the cost of longer training time. We will discuss optimizers in detail in the next section.

Batch size: The number of data examples processed in a single batch affects the computational
accuracy and the memory requirements during training.

Model dimensions: The model’s size (for example, the number of layers in the encoder and decoder,
the dimensionality of the embeddings, and so on) is a crucial hyperparameter that affects the model’s
capacity to learn and generalize.

Optimizer settings: Choosing an optimizer and its settings, such as the initial learning rate, beta
values in the Adam optimizer, and so on, are also considered hyperparameters. Again, we will explore
optimizers further in the next section.

Regularization terms: Regularization terms such as dropout rate are hyperparameters that help
prevent overfitting by adding some form of randomness or constraint to the training process.

Selecting the proper values for hyperparameters is crucial for the training
process as it significantly impacts the model’s performance and efficiency. It
often involves hyperparameter tuning, which involves experimentation and
refining to find values for hyperparameters that yield reliable performance for
a given task. Hyperparameter tuning can be somewhat of an art and a science.
We will touch on this more in later chapters.

With a high-level grasp of hyperparameters, we will move on to the choice of
optimizer, which is pivotal in controlling how efficiently the model learns from
the training data.

Choice of optimizer



The optimizer is a fundamental component of the training process and is
responsible for updating the model’s parameters to minimize error. Different
optimizers have different strategies for navigating the parameter space to find
a set of parameter values that yield low loss (or less error). The choice of
optimizer can significantly impact the speed and quality of the training process.

In the context of transformer models, the Adam optimizer is often the optimizer
of choice due to its efficiency and empirical success in training deep networks.
Adam adapts learning rates during training. For simplicity, we will not explore
all the possible optimizers but instead describe their purpose.

The optimizer’s primary task is to fine-tune the model’s parameters to reduce
translation errors, progressively guiding the model toward the desired level of
performance. However, an over-zealous optimization could lead the model to
memorize the training data, failing to generalize well to unseen data. To
mitigate this, we employ regularization techniques.

In the next section, we will explore regularization—a technique that works with
optimization to ensure that while the model learns to minimize translation
errors, it also remains adaptable to new, unseen data.

Regularization

Regularization techniques are employed to deter the model from memorizing
the training data (a phenomenon known as overfitting) and to promote better
performance on new, unseen data. Overfitting arises when the model, to
minimize the error, learns the training data to such an extent that it captures
useless patterns (or noise) along with the actual patterns. This over-precision in
learning the training data leads to a decline in performance when the model is
exposed to new data.

Let us revisit our simple scenario where we train a model to translate English
greetings to French greetings using a dataset that includes the word “Hello”
and its translation “Bonjour.” If the model is overfitting, it may memorize the
exact phrases from the training data without understanding the broader
translation pattern.

In an overfit scenario, suppose the model learns to translate “Hello” to
“Bonjour” with a probability of 1.0 because that is what it encountered most
often in the training data. When presented with new, unseen data, it may



encounter variations it has not seen before, such as “Hi,” which should also
translate to “Bonjour.” However, due to overfitting, the model might fail to
generalize from “Hello” to “Hi” as it is overly focused on the exact mappings it
saw during training.

Several regularization techniques can mitigate the overfitting problem. These
techniques apply certain constraints on the model’s parameters during
training, encouraging the model to learn a more generalized representation of
the data rather than memorizing the training dataset.

Here are some standard regularization techniques used in the context of
transformer models:

Dropout: In the context of NN-based models such as the transformer, the term “neurons” refers to
individual elements within the model that work together to learn from the data and make predictions.
Each neuron learns specific aspects or features from the data, enabling the model to understand and
translate text. During training, dropout randomly deactivates or “drops out” a fraction of these
neurons, temporarily removing them from the network. This random deactivation encourages the
model to spread its learning across many neurons rather than relying too heavily on a few. By doing
so, dropout helps the model to better generalize its learning to unseen data rather than merely
memorizing the training data (that is, overfitting).

Layer normalization: Layer normalization is a technique that normalizes the activations of neurons
in a layer for each training example rather than across a batch of examples. This normalization helps
stabilize the training process and acts as a form of regularization, preventing overfitting.

L1 or L2 regularization: L1 regularization, also known as Lasso, adds a penalty equal to the
absolute magnitude of coefficients, promoting parameter sparsity. L2 regularization, or Ridge, adds a
penalty based on the square of the coefficients, discouraging large values to prevent overfitting.
Although these techniques help in controlling model complexity and enhancing generalization, they
were not part of the transformer’s initial design.

By employing these regularization techniques, the model is guided toward
learning more generalized patterns in the data, which improves its ability to
perform well on unseen data, thus making the model more reliable and robust
in translating new text inputs.

Throughout the training process, we have mentioned the loss function and
discussed how the optimizer leverages it to adjust the model’s parameters,
aiming to minimize prediction error. The loss function quantifies the model’s
performance. We discussed how regularization penalizes the loss function to
prevent overfitting, encouraging the model to learn simpler, more generalizable
patterns. In the next section, we look closer at the nuanced role of the loss
function itself.



Loss function

The loss function is vital in training the transformer model, quantifying the
differences between the model’s predictions and the actual data. In language
translation, this error is measured between generated and actual translations
in the training dataset. A common choice for this task is cross-entropy loss,
which measures the difference between the model’s predicted probability
distribution across the target vocabulary and the actual distribution, where the
truth has a probability of 1 for the correct word and 0 for the rest.

The transformer often employs a variant known as label-smoothed cross-
entropy loss. Label smoothing adjusts the target probability distribution during
training, slightly lowering the probability for the correct class and increasing
the probability for all other classes, which helps prevent the model from
becoming too confident in its predictions. For instance, with a target
vocabulary comprising “Bonjour,” “Hola,” “Hello,” and “Hallo,” and assuming
“Bonjour” is the correct translation, a standard cross-entropy loss would aim
for the probability distribution of Bonjour: 1.0, Hola: 0.0, Hello: 0.0, Hallo: 0.0.
However, the label-smoothed cross-entropy loss would slightly adjust these
probabilities, as follows:

[ “Bonjour”: 0.925, “Hola”: 0.025, “Hello”: 0.025, “Hallo”: 0.025 ]

The smoothing reduces the model’s confidence and promotes better
generalization to unseen data. With a clearer understanding of the loss
function’s role, we can move on to the inference phase, where the trained
model generates translations for new, unseen data.

Inference

Having traversed the training landscape, our trained model is now adept with
optimized parameters to tackle the translation task. In the inference stage,
these learned parameters are employed to translate new, unseen text. We will
continue with our example phrase “Hello, how are you?” to elucidate this
process.

The inference stage is the practical application of the trained model on new
data. The trained parameters, refined after numerous iterations during
training, are now used to translate text from one language to another. The
inference steps can be described as follows:



1. Input preparation: Initially, our phrase “Hello, how are you?” is tokenized and encoded into a format
that the model can process, akin to the preparation steps in the training phase.

2. Passing through the model: The encoded input is then propagated through the model. As it
navigates through the encoder and decoder stacks, the trained parameters guide the transformation
of the input data, inching closer to accurate translations at each step.

3. Output generation: At the culmination of the decoder stack, the model generates a probability
distribution across the target vocabulary for each word in the input text. For the word “Hello,” a
probability distribution is formed over the target vocabulary, which, in our case, comprises French
words. The word with the highest probability is selected as the translation. This process is replicated
for each word in the phrase, rendering the translated output “Bonjour, comment ça va?”.

Now that we understand how the model produces the final output, we can
implement a transformer model step by step to solidify the concepts we have
discussed. However, before we dive into the code, we can briefly give a
synopsis of the end-to-end architecture flow:

1. Input tokenization: The initial English phrase “Hello, how are you?” is tokenized into smaller units
such as “Hello,” “,,” “how,” and so on.

2. Embeddings: These tokens are then mapped to continuous vector representations through an
embedding layer.

3. Positional encoding: To preserve the order of the sequence, positional encodings are added to the
embeddings.

4. Encoder self-attention: The embedded input sequence navigates through the encoder’s sequence of
self-attention layers. Here, each word gauges the relevance of every other word to comprehend the
full context.

5. FFN: The representations are subsequently refined by position-wise FFNs within each encoder layer.

6. Encoder output: The encoder renders contextual representations capturing the essence of the input
sequence.

7. Decoder attention: Incrementally, the decoder crafts the output sequence, employing self-attention
solely on preceding words to maintain the sequence order.

8. Encoder-decoder attention: The decoder evaluates the encoder’s output, centering on pertinent
input context while generating each word in the output sequence.

9. Output layers: The decoder feeds its output to the linear and SoftMax layers to produce “Bonjour,

comment ça va?

At the end of this chapter, we will adapt a best-in-class implementation of the
original transformer (Huang et al., 2022) into a minimal example that could
later be trained on various downstream tasks. This will serve as a theoretical
exercise to further solidify our understanding. In practice, we would rely on
pre-trained or foundation models, which we will learn to implement in later
chapters.



However, before we begin our practice project, we can trace its impact on the
current landscape of GenAI. We follow the trajectory of early applications of the
architecture (for example, Bidirectional Encoded Representations from

Transformers (BERT)) through to the first GPT.

Evolving language models – the AR Transformer

and its role in GenAI

In Chapter 2, we reviewed some of the generative paradigms that apply a
transformer-based approach. Here, we trace the evolution of Transformers
more closely, outlining some of the most impactful transformer-based language
models from the initial transformer in 2017 to more recent state-of-the-art
models that demonstrate the scalability, versatility, and societal considerations
involved in this fast-moving domain of AI (as illustrated in Figure 3.3):

Figure 3.3: From the original transformer to GPT-4

2017 – Transformer: The transformer model, introduced by Vaswani et al., was a paradigm shift in
NLP, featuring self-attention layers that could process entire sequences of data in parallel. This
architecture enabled the model to evaluate the importance of each word in a sentence relative to all
other words, thereby enhancing the model’s ability to capture the context.

2018 – BERT: Google’s BERT model innovated on the transformer architecture by utilizing a
bidirectional context in its encoder layers during pre-training. It was one of the first models to
understand the context of a word based on its entire sentence, both left and right, significantly
improving performance on a wide range of NLP tasks, especially those requiring a deep
understanding of context.

2018 – GPT-1: OpenAI’s GPT-1 model was a milestone in NLP, adopting a generative pre-trained
approach with a transformer’s decoder-only model. It was pre-trained on a diverse corpus of text data
and fine-tuned for various tasks, using a unidirectional approach that generated text sequentially from
left to right, which was particularly suited for generative text applications.

2019 – GPT-2: GPT-2 built upon the foundation laid by GPT-1, maintaining its decoder-only
architecture but significantly expanding its scale in terms of dataset and model size. This allowed



GPT-2 to generate text that was more coherent and contextually relevant across a broader range of
topics, demonstrating the power of scaling up transformer models.

2020 – GPT-3: OpenAI’s GPT-3 pushed the boundaries of scale in transformer models to 175 billion
parameters, enabling a wide range of tasks to be performed with minimal input, often with zero-shot

learning (ZSL) or few-shot learning (FSL). This showed that Transformers could generalize across
tasks and data types, often without the need for extensive task-specific data or fine-tuning.

2021 – InstructGPT: An optimized variant of GPT-3, InstructGPT was fine-tuned specifically to follow
user instructions and generate aligned responses, incorporating feedback loops that emphasized
safety and relevance in its outputs. This represented a focus on creating AI models that could more
accurately interpret and respond to human prompts.

2023 – GPT-4: GPT-4 was an evolution of OpenAI’s transformer models into the multimodal space,
capable of understanding and generating content based on both text and images. This model aimed to
produce safer and more contextually nuanced responses, showcasing a significant advancement in the
model’s ability to handle complex tasks and generate creative content.

2023 – LLaMA 2: Meta AI’s LLaMA 2 was part of a suite of models that focused on efficiency and
accessibility, allowing for high-performance language modeling while being more resource-efficient.
This model was aimed at facilitating a broader range of research and application development within
the AI community.

2023 – Claude 2: Anthropic’s Claude 2 was an advancement over Claude 1, increasing its token
context window and improving its reasoning and memory capabilities. It aimed to align more closely
with human values, offering responsible and nuanced generative capabilities for open-domain
question-answering and other conversational AI applications, marking progress in ethical AI
development.

The timeline presented highlights the remarkable progress in transformer-
based language models over the past several years. What originated as an
architecture that introduced the concept of self-attention has rapidly evolved
into models with billions of parameters that can generate coherent text, answer
questions, and perform a variety of intellectual tasks at high levels of
performance. The increase in scale and accessibility of models such as GPT-4
has opened new possibilities for AI applications. At the same time, recent
models have illustrated a focus on safety and ethics and providing more
nuanced, helpful responses to users.

In the next section, we accomplish a rite of passage for practitioners with an
interest in the NL field. We implement the key components of the original
transformer architecture using Python to more fully understand the mechanics
that started it all.

Implementing the original Transformer



The following code demonstrates how to implement a minimal transformer
model for a Seq2Seq translation task, mainly translating English text to French.
The code is structured into multiple sections, handling various aspects from
data loading to model training and translation.

Data loading and preparation

Initially, the code loads a dataset and prepares it for training. The data is
loaded from a CSV file, which is then split into English and French text. The
text is limited to 100 characters for demonstration purposes to reduce training
time. The CSV file includes a few thousand example data points and can be
found in the book’s GitHub repository
(https://github.com/PacktPublishing/Python-Generative-AI) along with the
complete code:

 

import pandas as pd 

import numpy as np 

# Load demo data 

data = pd.read_csv("./Chapter_3/data/en-fr_mini.csv") 

# Separate English and French lexicons 

EN_TEXT = data.en.to_numpy().tolist() 

FR_TEXT = data.fr.to_numpy().tolist() 

# Arbitrarily cap at 100 characters for demonstration to avoid long training times 

def demo_limit(vocab, limit=100): 

    return [i[:limit] for i in vocab] 

EN_TEXT = demo_limit(EN_TEXT) 

FR_TEXT = demo_limit(FR_TEXT) 

# Establish the maximum length of a given sequence 

MAX_LEN = 100

Tokenization

Next, a tokenizer is trained on the text data. The tokenizer is essential for
converting text data into numerical data that can be fed into the model:

 

from tokenizers import Tokenizer 

from tokenizers.models import WordPiece 

from tokenizers.trainers import WordPieceTrainer 

from tokenizers.pre_tokenizers import Whitespace 

def train_tokenizer(texts): 

    tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) 

    tokenizer.pre_tokenizer = Whitespace() 

    trainer = WordPieceTrainer( 

        vocab_size=5000, 

        special_tokens=["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]",  

            "<sos>", "<eos>"], 

    ) 

    tokenizer.train_from_iterator(texts, trainer) 

https://github.com/PacktPublishing/Python-Generative-AI


    return tokenizer 

en_tokenizer = train_tokenizer(EN_TEXT) 

fr_tokenizer = train_tokenizer(FR_TEXT)

Data tensorization

The text data is then tensorized, which involves converting the text data into
tensor format. This step is crucial for preparing the data for training with
PyTorch:

 

import torch 

from torch.nn.utils.rnn import pad_sequence 

def tensorize_data(text_data, tokenizer): 

    numericalized_data = [ 

        torch.tensor(tokenizer.encode(text).ids) for text in text_data 

    ] 

    padded_data = pad_sequence(numericalized_data, 

        batch_first=True) 

    return padded_data 

src_tensor = tensorize_data(EN_TEXT, en_tokenizer) 

tgt_tensor = tensorize_data(FR_TEXT, fr_tokenizer)

Dataset creation

A custom dataset class is created to handle the data. This class is essential for
loading the data in batches during training:

 

from torch.utils.data import Dataset, DataLoader 

class TextDataset(Dataset): 

    def __init__(self, src_data, tgt_data): 

        self.src_data = src_data 

        self.tgt_data = tgt_data 

    def __len__(self): 

        return len(self.src_data) 

    def __getitem__(self, idx): 

        return self.src_data[idx], self.tgt_data[idx] 

dataset = TextDataset(src_tensor, tgt_tensor)

Embeddings layer

The embeddings layer maps each token to a continuous vector space. This layer
is crucial for the model to understand and process the text data:

 

import torch.nn as nn 

class Embeddings(nn.Module): 

    def __init__(self, d_model, vocab_size): 

        super(Embeddings, self).__init__() 

        self.embed = nn.Embedding(vocab_size, d_model) 

    def forward(self, x): 

        return self.embed(x)



Positional encoding

The positional encoding layer adds positional information to the embeddings,
which helps the model understand the order of tokens in the sequence:

 

import math 

class PositionalEncoding(nn.Module): 

    def __init__(self, d_model, dropout=0.1, 

                 max_len=MAX_LEN 

    ): 

        super(PositionalEncoding, self).__init__() 

        self.dropout = nn.Dropout(p=dropout) 

        pe = torch.zeros(max_len, d_model) 

        position = torch.arange(0.0, max_len).unsqueeze(1) 

        div_term = torch.exp( 

            torch.arange(0.0, d_model, 2) * - \ 

                (math.log(10000.0) / d_model) 

        ) 

        pe[:, 0::2] = torch.sin(position * div_term) 

        pe[:, 1::2] = torch.cos(position * div_term) 

        pe = pe.unsqueeze(0) 

        self.register_buffer("pe", pe) 

    def forward(self, x): 

        x = x + self.pe[:, : x.size(1)] 

        return self.dropout(x)

Multi-head self-attention

The multi-head self-attention (MHSA) layer is a crucial part of the
transformer architecture that allows the model to focus on different parts of the
input sequence when producing an output sequence:

 

class MultiHeadSelfAttention(nn.Module): 

    def __init__(self, d_model, nhead): 

        super(MultiHeadSelfAttention, self).__init__() 

        self.attention = nn.MultiheadAttention(d_model, nhead) 

    def forward(self, x): 

        return self.attention(x, x, x)

FFN

The FFN is a simple fully connected NN (FCNN) that operates independently
on each position:

 

class FeedForward(nn.Module): 

    def __init__(self, d_model, d_ff): 

        super(FeedForward, self).__init__() 

        self.linear1 = nn.Linear(d_model, d_ff) 

        self.dropout = nn.Dropout(0.1) 

        self.linear2 = nn.Linear(d_ff, d_model) 

    def forward(self, x): 

        return self.linear2(self.dropout(torch.relu(self.linear1(x))))



Encoder layer

The encoder layer consists of an MHSA mechanism and a simple FFNN. This
structure is repeated in a stack to form the complete encoder:

 

class EncoderLayer(nn.Module): 

    def __init__(self, d_model, nhead, d_ff): 

        super(EncoderLayer, self).__init__() 

        self.self_attn = MultiHeadSelfAttention(d_model, nhead) 

        self.feed_forward = FeedForward(d_model, d_ff) 

        self.norm1 = nn.LayerNorm(d_model) 

        self.norm2 = nn.LayerNorm(d_model) 

        self.dropout = nn.Dropout(0.1) 

    def forward(self, x): 

        x = x.transpose(0, 1) 

        attn_output, _ = self.self_attn(x) 

        x = x + self.dropout(attn_output) 

        x = self.norm1(x) 

        ff_output = self.feed_forward(x) 

        x = x + self.dropout(ff_output) 

        return self.norm2(x).transpose(0, 1)

Encoder

The encoder is a stack of identical layers with an MHSA mechanism and an
FFN:

 

class Encoder(nn.Module): 

    def __init__(self, d_model, nhead, d_ff, num_layers, vocab_size): 

        super(Encoder, self).__init__() 

        self.embedding = Embeddings(d_model, vocab_size) 

        self.pos_encoding = PositionalEncoding(d_model) 

        self.encoder_layers = nn.ModuleList( 

            [EncoderLayer(d_model, nhead, d_ff) for _ in range( 

                num_layers)] 

        ) 

        self.feed_forward = FeedForward(d_model, d_ff) 

    def forward(self, x): 

        x = self.embedding(x) 

        x = self.pos_encoding(x) 

        for layer in self.encoder_layers: 

            x = layer(x) 

        return x

Decoder layer

Similarly, the decoder layer consists of two MHA mechanisms—one self-
attention and one cross-attention—followed by an FFN:

 

class DecoderLayer(nn.Module): 

    def __init__(self, d_model, nhead, d_ff): 

        super(DecoderLayer, self).__init__() 



        self.self_attn = MultiHeadSelfAttention(d_model, nhead) 

        self.cross_attn = nn.MultiheadAttention(d_model, nhead) 

        self.feed_forward = FeedForward(d_model, d_ff) 

        self.norm1 = nn.LayerNorm(d_model) 

        self.norm2 = nn.LayerNorm(d_model) 

        self.norm3 = nn.LayerNorm(d_model) 

        self.dropout = nn.Dropout(0.1) 

    def forward(self, x, memory): 

        x = x.transpose(0, 1) 

        memory = memory.transpose(0, 1) 

        attn_output, _ = self.self_attn(x) 

        x = x + self.dropout(attn_output) 

        x = self.norm1(x) 

        attn_output, _ = self.cross_attn(x, memory, memory) 

        x = x + self.dropout(attn_output) 

        x = self.norm2(x) 

        ff_output = self.feed_forward(x) 

        x = x + self.dropout(ff_output) 

        return self.norm3(x).transpose(0, 1)

Decoder

The decoder is also a stack of identical layers. Each layer contains two MHA
mechanisms and an FFN:

 

class Decoder(nn.Module): 

    def __init__(self, d_model, nhead, d_ff, num_layers, vocab_size): 

        super(Decoder, self).__init__() 

        self.embedding = Embeddings(d_model, vocab_size) 

        self.pos_encoding = PositionalEncoding(d_model) 

        self.decoder_layers = nn.ModuleList( 

            [DecoderLayer(d_model, nhead, d_ff) for _ in range( 

                num_layers)] 

        ) 

        self.linear = nn.Linear(d_model, vocab_size) 

        self.softmax = nn.Softmax(dim=2) 

    def forward(self, x, memory): 

        x = self.embedding(x) 

        x = self.pos_encoding(x) 

        for layer in self.decoder_layers: 

            x = layer(x, memory) 

        x = self.linear(x) 

        return self.softmax(x)

This stacking layer pattern continues to build the transformer architecture.
Each block has a specific role in processing the input data and generating
output translations.

Complete transformer

The transformer model encapsulates the previously defined encoder and
decoder structures. This is the primary class that will be used for training and
translation tasks:



 

class Transformer(nn.Module): 

    def __init__( 

        self, 

        d_model, 

        nhead, 

        d_ff, 

        num_encoder_layers, 

        num_decoder_layers, 

        src_vocab_size, 

        tgt_vocab_size, 

    ): 

        super(Transformer, self).__init__() 

        self.encoder = Encoder(d_model, nhead, d_ff, \ 

            num_encoder_layers, src_vocab_size) 

        self.decoder = Decoder(d_model, nhead, d_ff, \ 

            num_decoder_layers, tgt_vocab_size) 

    def forward(self, src, tgt): 

        memory = self.encoder(src) 

        output = self.decoder(tgt, memory) 

        return output

Training function

The train function iterates through the epochs and batches, calculates the loss,
and updates the model parameters:

 

def train(model, loss_fn, optimizer, NUM_EPOCHS=10): 

    for epoch in range(NUM_EPOCHS): 

        model.train() 

        total_loss = 0 

        for batch in batch_iterator: 

            src, tgt = batch 

            optimizer.zero_grad() 

            output = model(src, tgt) 

            loss = loss_fn(output.view(-1, TGT_VOCAB_SIZE), 

                tgt.view(-1)) 

            loss.backward() 

            optimizer.step() 

            total_loss += loss.item() 

        print(f"Epoch {epoch},  

            Loss {total_loss / len(batch_iterator)}")

Translation function

The translate function uses the trained model to translate a source text into the
target language. It generates a translation token by token and stops when an
end-of-sequence (EOS) token is generated or when the maximum target
length is reached:

 

def translate(model, src_text, src_tokenizer, 

              tgt_tokenizer, max_target_length=50 

): 

    model.eval() 



    src_tokens = src_tokenizer.encode(src_text).ids 

    src_tensor = torch.LongTensor(src_tokens).unsqueeze(0) 

    tgt_sos_idx = tgt_tokenizer.token_to_id("<sos>") 

    tgt_eos_idx = tgt_tokenizer.token_to_id("<eos>") 

    tgt_tensor = torch.LongTensor([tgt_sos_idx]).unsqueeze(0) 

    for i in range(max_target_length): 

        with torch.no_grad(): 

            output = model(src_tensor, tgt_tensor) 

        predicted_token_idx = output.argmax(dim=2)[0, -1].item() 

        if predicted_token_idx == tgt_eos_idx: 

            break 

        tgt_tensor = torch.cat((tgt_tensor, 

            torch.LongTensor([[predicted_token_idx]])), 

            dim=1) 

    translated_token_ids = tgt_tensor[0, 1:].tolist() 

    translated_text = tgt_tokenizer.decode(translated_token_ids) 

    return translated_text

Main execution

In the main block of the script, hyperparameters are defined, the tokenizer and
model are instantiated, and training and translation processes are initiated:

 

if __name__ == "__main__": 

    NUM_ENCODER_LAYERS = 2 

    NUM_DECODER_LAYERS = 2 

    DROPOUT_RATE = 0.1 

    EMBEDDING_DIM = 512 

    NHEAD = 8 

    FFN_HID_DIM = 2048 

    BATCH_SIZE = 31 

    LEARNING_RATE = 0.001 

    en_tokenizer = train_tokenizer(EN_TEXT) 

    fr_tokenizer = train_tokenizer(FR_TEXT) 

    SRC_VOCAB_SIZE = len(en_tokenizer.get_vocab()) 

    TGT_VOCAB_SIZE = len(fr_tokenizer.get_vocab()) 

    src_tensor = tensorize_data(EN_TEXT, en_tokenizer) 

    tgt_tensor = tensorize_data(FR_TEXT, fr_tokenizer) 

    dataset = TextDataset(src_tensor, tgt_tensor) 

    model = Transformer( 

        EMBEDDING_DIM, 

        NHEAD, 

        FFN_HID_DIM, 

        NUM_ENCODER_LAYERS, 

        NUM_DECODER_LAYERS, 

        SRC_VOCAB_SIZE, 

        TGT_VOCAB_SIZE, 

    ) 

    loss_fn = nn.CrossEntropyLoss() 

    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) 

    batch_iterator = DataLoader( 

        dataset, batch_size=BATCH_SIZE, 

        shuffle=True, drop_last=True 

    ) 

    train(model, loss_fn, optimizer, NUM_EPOCHS=10) 

    src_text = "hello, how are you?" 

    translated_text = translate( 

        model, src_text, en_tokenizer, fr_tokenizer) 

    print(translated_text)



This script orchestrates a machine translation task from loading data to
training a transformer model and eventually translating text from English to
French. Initially, it loads a dataset, processes the text, and establishes
tokenizers to convert text to numerical data. Following this, it defines the
architecture of a transformer model in PyTorch, detailing each component from
the embeddings’ self-attention mechanisms to the encoder and decoder stacks.

The script further organizes the data into batches, sets up a training loop, and
defines a translation function. Training the model on the provided English and
French sentences teaches it to map sequences from one language to another.
Finally, it translates a sample sentence from English to French to demonstrate
the model’s capabilities.

Summary

The advent of the transformer significantly propelled the field of NLP forward,
serving as the foundation for today’s cutting-edge generative language models.
This chapter delineated the progression of NLP that paved the way for this
pivotal innovation. Initial statistical techniques such as count vectors and TF-
IDF were adept at extracting rudimentary word patterns, yet they fell short in
grasping semantic nuances.

Incorporating neural language models marked a stride toward more profound
representations through word embeddings. Nevertheless, recurrent networks
encountered hurdles in handling longer sequences. This inspired the
emergence of CNNs, which introduced computational efficacy via parallelism,
albeit at the expense of global contextual awareness.

The inception of attention mechanisms emerged as a cornerstone. In 2017,
Vaswani et al. augmented these advancements, unveiling the transformer
architecture. The hallmark self-attention mechanism of the transformer
facilitates contextual modeling across extensive sequences in a parallelized
manner. The layered encoder-decoder structure meticulously refines
representations to discern relationships indispensable for endeavors such as
translation.

The transformer, with its parallelizable and scalable self-attention design, set
new benchmarks in performance. Its core tenets are the architectural bedrock
for contemporary high-achieving generative language models such as GPT.



In the next chapter, we will discuss how to apply pre-trained generative models
from prototype to production.
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4

Applying Pretrained Generative Models: From

Prototype to Production

In the preceding chapters, we explored the fundamentals of generative AI,
explored various generative models, such as generative adversarial

networks (GANs), diffusers, and transformers, and learned about the
transformative impact of natural language processing (NLP). As we
transition into the practical aspects of applying generative AI, we should
ground our exploration in a practical example. This approach will provide a
concrete context, making the technical aspects more relatable and the learning
experience more engaging.

We will introduce “StyleSprint,” a clothing shop looking to enhance its online
presence. One way to achieve this is by crafting unique and engaging product
descriptions for its various products. However, manually creating captivating
descriptions for a large inventory is challenging. This situation is prime
opportunity for the application of generative AI. By leveraging a pretrained
generative model, StyleSprint can automate the crafting of compelling product
descriptions, saving considerable time and enriching the online shopping
experience for its customers.

As we step into the practical application of a pretrained generative large

language models (LLM), the first order of business is to set up a Python
environment conducive to prototyping with generative models. This setup is
vital for transitioning the project from a prototype to a production-ready state,
setting the stage for StyleSprint to realize its goal of automated content
generation.

In Chapters 2 and 3, we used Google Colab for prototyping due to its ease of
use and accessible GPU resources. It served as a great platform to test ideas
quickly. However, as we shift our focus toward deploying our generative model
in a real-world setting, it is essential to understand the transition from a
prototyping environment such as Google Colab to a more robust, production-
ready setup. This transition will ensure our solution is scalable, reliable, and
well-optimized for handling real-world traffic. In this chapter, we will walk



through the steps in setting up a production-ready Python environment,
underscoring the crucial considerations for a smooth transition from prototype
to production.

By the end of this chapter, we will understand the process of taking a
generative application from a prototyping environment to a production-ready
setup. We will define a reliable and repeatable strategy for evaluating,
monitoring, and deploying models to production.

Prototyping environments

Jupyter notebooks provide an interactive computing environment to combine
code execution, text, mathematics, plots, and rich media into a single
document. They are ideal for prototyping and interactive development, making
them a popular choice among data scientists, researchers, and engineers. Here
is what they offer:

Kernel: At the heart of a Jupyter notebook is a kernel, a computational engine that executes the code
contained in the notebook. For Python, this is typically an IPython kernel. This kernel remains active
and maintains the state of your notebook’s computations while the notebook is open.

Interactive execution: Code cells allow you to write and execute code interactively, inspecting the
results and tweaking the code as necessary.

Dependency management: You can install and manage libraries and dependencies directly within
the notebook using pip or conda commands.

Visualization: You can embed plots, graphs, and other visualizations to explore data and results
interactively.

Documentation: Combining Markdown cells with code cells allows for well-documented, self-
contained notebooks that explain the code and its output.

A drawback to Jupyter notebooks is that they typically rely on the
computational resources of your personal computer. Most personal laptops and
desktops are not optimized or equipped to handle computationally intensive
processes. Having adequate computational resources is crucial for managing
the computational complexity of experimenting with an LLM. Fortunately, we
can extend the capabilities of a Jupyter notebook with cloud-based platforms
that offer computational accelerators such as graphics processing units

(GPUs) and tensor processing units (TPUs). For example, Google Colab
instantly enhances Jupyter notebooks, making them conducive to



computationally intensive experimentation. Here are some of the key features
of a cloud-based notebook environment such as Google Colab:

GPU/TPU access: Provides free or affordable access to GPU and TPU resources for accelerated
computation, which is crucial when working with demanding machine learning models

Collaboration: Permits easy sharing and real-time collaboration, similar to Google Docs

Integration: Allows for easy storage and access to notebooks and data

Let’s consider our StyleSprint scenario. We will want to explore a few different
models to generate product descriptions before deciding on one that best fits
StyleSprint’s goals. We can set up a minimal working prototype in Google Colab
to compare models. Again, cloud-based platforms provide an optimal and
accessible environment for initial testing, experimentation, and even some
lightweight training of models. Here is how we might initially set up a
generative model to start experimenting with automated product description
generation for StyleSprint:

 

# In a Colab or Jupyter notebook 

!pip install transformers 

# Google Colab Jupyter notebook 

from transformers import pipeline 

# Initialize a text generation pipeline with a generative model, say GPT-Neo 

text_generator = pipeline( 

    'text-generation', model='EleutherAI/gpt-neo-2.7B') 

# Example prompt for product description generation 

prompt = "This high-tech running shoe with advanced cushioning and support" 

# Generating the product description 

generated_text = text_generator(prompt, max_length=100, do_sample=True) 

# Printing the generated product description 

print(generated_text[0]['generated_text'])

Output:
 

This high-tech running shoe with advanced cushioning and support combines the best of 

traditional running shoes and the latest technologies.

In this simple setup, we’re installing the transformers library, which offers a
convenient interface to various pretrained models. We then initialize a text
generation pipeline with an open source version of GPT-Neo, capable of
generating coherent and contextually relevant text. This setup serves as a
starting point for StyleSprint to experiment with generating creative product
descriptions on a small scale.

Later in this chapter, we will expand our experiment to evaluate and compare
multiple pretrained generative models to determine which best meets our
needs. However, before advancing further in our experimentation and



prototyping, it is crucial to strategically pause and project forward. This
deliberate forethought allows us to consider the necessary steps for effectively
transitioning our experiment into a production environment. By doing so, we
ensure a comprehensive view of the project from end to end, to align with long-
term operational goals.

Figure 4.1: Moving from prototyping to production—the stages

Transitioning to production

As we plan for a production setup, we should first understand the intrinsic
benefits and features of the prototyping environment we will want to carry
forward to a production setting. Many of the features of prototyping
environments such as Google Colab are deeply integrated and can easily go
unnoticed, so it is important to dissect and catalog the features we will need in
production. For example, the following features are inherent in Google Colab
and will be critical in production:

Package management: In Colab, installing necessary libraries is as straightforward as executing a
cell with !pip install library_name. In production, we will have to preinstall libraries or make sure
we can install them as needed. We must also ensure that project-specific libraries do not interfere
with other projects.

Dependency isolation: Google Colab automatically facilitates isolated dependencies, ensuring
package installations and updates do not interfere with other projects. In production, we may also
want to deploy various projects using the same infrastructure. Dependency isolation will be critical to
prevent one project’s dependency updates from impacting other projects.



Interactive code execution: The interactive execution of code cells helps in testing individual code
snippets, visualizing results, and debugging in real time. This convenience is not necessary in
production but could be helpful for quick debugging.

Resource accessibility: With Colab, access to GPUs and TPUs is simplified, which is crucial for
running computation-intensive tasks. For production, we will want to examine our dynamic
computational needs and provision the appropriate infrastructure.

Data integration: Colab offers simple connectivity to data sources for analysis and modeling. In
production, we can either bootstrap our environment with data (i.e., deploy data directly into the
environment) or ensure connectivity to remote data sources as needed.

Versioning and collaboration: Tracking versions of your project code with Google Colab can easily
be accomplished using notebooks. Additionally, Colab is preconfigured to interact with Git. Git is a
distributed version control system that is widely used for tracking changes in source code during
software development. In production, we will also want to integrate Git to manage our code and
synchronize it with a remote code repository such as GitHub or Bitbucket. Remote versioning ensures
that our production environment always reflects the latest changes and enables ongoing
collaboration.

Error handling and debugging: In Colab, we have direct access to the Python runtime and can
typically see error messages and tracebacks in real time to help identify and resolve issues. We will
want the same level of visibility in production via adequate logging of system errors. In total, we want
to carry over the convenience and simplicity of our Google Colab prototyping environment but provide
the robustness and scalability required for production. To do so, we will map each of the key
characteristics we laid out to a corresponding production solution. These key features should ensure a
smooth transition for deploying StyleSprint’s generative model for automated product description
generation.

Mapping features to production setup

To ensure we can seamlessly transition our prototyping environment to
production, we can leverage Docker, a leading containerization tool.
Containerization tools package applications with their dependencies for
consistent performance across different systems. A containerized approach will
help us replicate Google Colab’s isolated, uniform environments, ensuring
reliability and reducing potential compatibility issues in production. The table
that follows describes how we can map each of the benefits of our prototyping
environment to a production analog:

Feature Environment

Prototyping Production



Feature Environment

Prototyping Production

Package
management

Inherent
through
preinstalled
package
managers

Docker streamlines application deployment
and consistency across environments including
package managers.

Dependency
isolation

Inherent
through
notebooks

Docker can also ensure projects are cleanly
isolated.

Interactive
code
execution

Inherent
through
notebooks

Docker helps to maintain versions of Python
that provide interactive code execution by
default. However, we may want to connect an
integrated development environment

(IDE) to our production environment to
interact with code remotely as needed.

Resource
accessibility

Inherent for
cloud-based
notebooks

GPU-enabled Docker containers enhance
production by enabling structured GPU
utilization, allowing scalable, efficient model
performance.

Data
integration

Not inherent,
and requires
code-based
integration

Integrating Docker with a remote data source,
such as AWS S3 or Google Cloud Storage,
provides secure and scalable solutions for
importing and exporting data.



Feature Environment

Prototyping Production

Versioning
and
collaboration

Inherent
through
notebooks
and
preconfigured
for Git

Integrating Docker with platforms such as
GitHub or GitLab enables code collaboration
and documentation.

Error
handling and
debugging

Inherent
through
direct
interactive
access to
runtime

We can embed Python libraries such as logging
or Loguru in Docker deployments for enhanced
error tracking in production.

Table 4.1: Transitioning features from Colab to production via Docker

Having mapped out the features of our prototyping environment to
corresponding tools and practices for a production setup, we are now better
prepared to implement a generative model for StyleSprint in a production-
ready environment. The transition entails setting up a stable, scalable, and
reproducible Python environment, a crucial step for deploying our generative
model to automate the generation of product descriptions in a real-world
setting. As discussed, we can leverage Docker in tandem with GitHub and its
continuous integration/continuous deployment (CI/CD) capabilities,
providing a robust framework for this production deployment. A CI pipeline
automates the integration of code changes from multiple contributors into a
shared repository. We pair CI with CD to automate the deployment of our code
to a production environment.

Setting up a production-ready environment

So far, we have discussed how to bridge the gap between prototyping and
production environments. Cloud-based environments such as Google Colab



provide a wealth of features that are not inherently available in production.
Now that we have a better understanding of those characteristics, the next step
is to implement a robust production setup to ensure that our application can
handle real-world traffic, scale as needed, and remain stable over time.

The tools and practices in a production environment differ significantly from
those in a prototyping environment. In production, scalability, reliability,
resource management, and security become paramount, whereas, in a
prototyping environment, the models are only relied upon by a few users for
experimentation. In production, we could expect large-scale consumption from
divisions throughout the organization. For example, in the StyleSprint scenario,
there may be multiple departments or sub-brands hoping to automate their
product descriptions.

In the early stages of our StyleSprint project, we can use free and open source
tools such as Docker and GitHub for tasks such as containerization, version
control, and CI. These tools are offered and managed by a community of users,
giving us a cost-effective solution. As StyleSprint expands, we might consider
upgrading to paid or enterprise editions that offer advanced features and
professional support. For the moment, our focus is on leveraging the
capabilities of the open source versions. Next, we will walk through the
practical implementation of these tools step by step. By the end, we will be
ready to deploy a production-ready model-as-a-service (MaaS) for automatic
product descriptions.

Local development setup

We begin by making sure we can connect to a production environment
remotely. We can leverage an IDE, which is software that enables us to easily
organize code and remotely connect to the production environment.

Visual Studio Code

Begin by installing Visual Studio Code (VS Code), a free code editor by
Microsoft. It is preferred for its integrated Git control, terminal, and
marketplace for extensions that enhance its functionality. It provides a
conducive environment for writing, testing, and debugging code.



Project initialization

Next, we set up a structured project directory to keep the code modular and
organized. We will also initialize our working directory with Git, which enables
us to synchronize code with a remote repository. As mentioned, we leverage Git
to keep track of code changes and collaborate with others more seamlessly.
Using the terminal window in Visual Studio, we can initialize the project using
three simple commands. We use mkdir to create or “make” a directory. We use
the cd command to change directories. Finally, we use git init to initialize our
project with Git. Keep in mind that this assumes Git is installed. Instructions to
install Git are made available on its website (https://git-scm.com/).
 

mkdir StyleSprint 

cd StyleSprint 

git init

Docker setup

We’ll now move on to setting up a Docker container. A Docker container is an
isolated environment that encapsulates an application and its dependencies,
ensuring consistent operation across different systems. For clarity, we can
briefly describe the key aspects of Docker as follows:

Containers: These are portable units comprising the application and its dependencies.

Host operating system’s kernel: When a Docker container is run on a host machine, it utilizes the
kernel of the host’s operating system and resources to operate, but it does so in a way that is isolated
from both the host system and other containers.

Dockerfiles: These are scripts used to create container images. They serve as a blueprint containing
everything needed to run the application. This isolation and packaging method prevents application
conflicts and promotes efficient resource use, streamlining development and deployment.

A containerized approach will help ensure consistency and portability. For
example, assume StyleSprint finds a cloud-based hosting provider that is more
cost-effective; moving to the new provider is as simple as migrating a few
configuration files.

We can install Docker from the official website. Docker provides easy-to-follow
installation guides including support for various programming languages.

Once Docker is installed, we can create a Dockerfile in the project directory to
specify the environment setup. For GPU support, we will want to start from an

https://git-scm.com/


NVIDIA CUDA base image. Docker, like many other virtualized systems,
operates using a concept called images. Images are a snapshot of a
preconfigured environment that can be used as a starting point for a new
project. In our case, we will want to start with a snapshot that integrates GPU
support using the CUDA library, which is a parallel processing library provided
by NVIDIA. This library will enable the virtualized environment (or container)
to leverage any GPUs installed on the host machine. Leveraging GPUs will
accelerate model inferencing.

Now we can go ahead and create a Dockerfile with the specifications for our
application:

 

# Use an official NVIDIA CUDA runtime as a base image 

FROM nvidia/cuda:11.0-base 

# Set the working directory in the container to /app 

WORKDIR /app 

# Copy the current directory contents into the container at /app 

COPY . /app 

# Install any needed packages specified in requirements.txt 

RUN pip install --no-cache-dir -r requirements.txt 

# Make port 80 available to the world outside this container 

EXPOSE 80 

# Run app.py when the container launches 

CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "80"]

This Dockerfile serves as a blueprint that Docker follows to build our container.
We initiate the process from an official NVIDIA CUDA base image to ensure
GPU support. The working directory in the container is set to /app, where we
then copy the contents of our project. Following that, we install the necessary
packages listed in the requirements.txt file. Port 80 is exposed for external access
to our application. Lastly, we specify the command to launch our application,
which is running app.py using the Python interpreter. This setup encapsulates all
the necessary components, including GPU support, to ensure our generative
model operates efficiently in a production-like environment.

Requirements file

We also need a method for keeping track of our Python-specific dependencies.
The container will include Python but will not have any indication as to what
requirements our Python application has. We can specify those dependencies
explicitly by defining a requirements.txt file in our project directory to list all the
necessary Python packages:



 

fastapi==0.65.2 

torch==1.9.0 

transformers==4.9.2 

uvicorn==0.14.0

Application code

Now we can create an app.py file for our application code. This is where we will
write the code for our generative model, leveraging libraries such as PyTorch
and Transformers. To expose our model as a service, we will use FastAPI, a
modern, high-performance framework for building web APIs. A web API is a
protocol that enables different software applications to communicate and
exchange data over the internet, allowing them to use each other’s functions
and services.

The following snippet creates a minimal API that will serve the model responses
whenever another application or software requests the /generate/ endpoint. This
will enable StyleSprint to host its model as a web service. This means that
other applications (e.g., mobile apps, batch processes) can access the model
using a simple URL. We can also add exception handling to provide an
informative error message should the model produce any kind of error:

 

from fastapi import FastAPI, HTTPException 

from pydantic import BaseModel 

from transformers import pipeline 

# Load the pre-trained model 

generator = pipeline('text-generation',  

    model='EleutherAI/gpt-neo-2.7B') 

# Create the FastAPI app 

app = FastAPI() 

# Define the request body 

class GenerationInput(BaseModel): 

prompt: str 

# Define the endpoint 

@app.post("/generate") 

def generate_text(input: GenerationInput): 

try: 

    # Generate text based on the input prompt 

    generated_text = generator(input.prompt, max_length=150) 

    return {"generated_text": generated_text} 

except: 

    raise HTTPException(status_code=500, 

        detail="Model failed to generate text")

Now that we have a Docker setup, the next step is to deploy the application to
the host server. We can streamline this process with a CI/CD pipeline. The goal
is to fully automate all deployment steps, including a suite of tests to ensure



that any code changes do not introduce any errors. We then leverage GitHub
Actions to create a workflow that is directly integrated with a code repository.

Creating a code repository

Before we can leverage the automation capabilities of GitHub, we will need a
repository. Creating a GitHub repository is straightforward, following these
steps:

1. Sign up/log in to GitHub: If you don’t have a GitHub account, sign up at github.com. If you already
have an account, just log in.

2. Go to the repository creation page: Click the + icon in the top-right corner of the GitHub home
page and select New repository.

3. Fill in the repository details:

Repository Name: Choose a name for your repository

Description (optional): Add a brief description of your repository

Visibility: Select either Public (anyone can see this repository) or Private (only you and the
collaborators you invite can see it)

4. Initialize the repository with a README (optional):

Check Initialize this repository with a README if you want to add a simple text file that
can be updated later to provide instructions for collaborators.

We can also add a .gitignore file or choose a license. A gitignore file allows us to add
paths or file types that should not be uploaded to the repository. For example, Python
creates temporary files that are not critical to the application. Adding `__pycache__/` to the
gitignore file will automatically ignore all contents of that directory.

5. Create repository: Click the Create repository button.

With our repository setup complete, we can move on to defining our CI/CD
pipeline to automate our deployments.

CI/CD setup

To create a pipeline, we will need a configuration file that outlines the stages of
deployment and instructs the automation server to build and deploy our Docker
container. Let’s look at the steps:

1. In our GitHub repository, we can create a new file in the .github/workflows directory named ci-
cd.yml. GitHub will automatically find any files in this directory to trigger deployments.

http://github.com/


2. Open ci-cd.yml and define the following workflow:

 

name: CI/CD Pipeline

 

on:

 

  push:

 

    branches:

 

      - main

 

jobs:

 

  build-and-test:

 

    runs-on: ubuntu-latest

 

  steps:

 

    - name: Checkout code

 

      uses: actions/checkout@v4

 

    - name: Build Docker image

 

  # assumes the Dockerfile is in the root (.)

 

      run: docker build -t stylesprint .

 

    - name: Run tests

 

  # assumes a set of unit tests were defined

 

      run: docker run stylesprint python -m unittest discover

 

deploy:

 

  needs: build-and-test

 

  runs-on: ubuntu-latest

 

  steps:

 

    - name: Checkout code

 

      uses: actions/checkout@v4

 

    - name: Login to DockerHub

 

      run: echo ${{ secrets.DOCKER_PASSWORD }} | docker login -u ${{ 

secrets.DOCKER_USERNAME }} --password-stdin

 

    - name: Push Docker image



 

      run: |

 

        docker tag stylesprint:latest ${{ secrets.DOCKER_USERNAME 

}}/stylesprint:latest

 

        docker push ${{ secrets.DOCKER_USERNAME }}/stylesprint:latest

In this setup, our workflow consists of two primary jobs: build-and-test and
deploy. The build-and-test job is responsible for checking out the code from the
repository, building the Docker image, and executing any tests. On the other
hand, the deploy job, which relies on completing build-and-test, handles
DockerHub login and pushes the Docker image there. DockerHub, similar to
GitHub, is a repository specifically for Docker images.

For authenticating with DockerHub, it is advised to securely store your
DockerHub credentials in your GitHub repository. This can be done by
navigating to your repository on GitHub, clicking on Settings, then Secrets,
and adding DOCKER_USERNAME and DOCKER_PASSWORD as new repository secrets.

Notice that we did not have to perform any additional steps to execute the
pipeline. The workflow is designed to trigger automatically upon a push (or
upload) to the main branch. Recall that the entire process relies on the Git
pattern where new changes are registered through a commit or check-in of code
and a push or upload of code changes. Whenever changes are pushed, we can
directly observe the entire pipeline in action within the Actions tab of the
GitHub repository.

We have now walked through all of the steps necessary to deploy our model to
production. With all of this critical setup behind us, we can now return to
choosing the best model for our project. The goal is to find a model that can
effectively generate captivating product descriptions for StyleSprint. However,
the variety of generative models available requires a thoughtful choice based
on our project’s needs and constraints.

Moreover, we want to choose the right evaluation metrics and discuss other
considerations that will guide us in making an informed decision for our
project. This exploration will equip us with the knowledge needed to select a
model that not only performs well but also aligns with our project objectives
and the technical infrastructure we have established.



Model selection – choosing the right pretrained

generative model

Having established a minimal production environment in the previous section,
we now focus on a pivotal aspect of our project – selecting the right generative
model for generating engaging product descriptions. The choice of model is
crucial as it significantly influences the effectiveness and efficiency of our
solution. The objective is to automate the generation of compelling and
accurate product descriptions for StyleSprint’s diverse range of retail products.
By doing so, we aim to enrich the online shopping experience for customers
while alleviating the manual workload of crafting unique product descriptions.

Our objective is to select a generative model that can adeptly handle nuanced
and sophisticated text generation to significantly expedite the process of
creating unique, engaging product descriptions, saving time and resources for
StyleSprint.

In selecting our model, it is important to thoroughly evaluate various factors
influencing its performance and suitability for the project.

Meeting project objectives

Before we can select and apply evaluation methods to our model selection
process, we should first make sure we understand the project objectives. This
involves defining the business problem, identifying any technical constraints,
identifying any risk associated with the model, including interpretation of
model outcomes, and ascertaining considerations for any potential disparate
treatment or bias:

Problem definition: In our scenario, the goal is to create accurate and engaging descriptions for a
wide range of retail clothing. As StyleSprint’s product range may expand, the system should scale
seamlessly to accommodate a larger inventory without significantly increasing operational costs.
Performance expectations include compelling descriptions to attract potential customers, accuracy to
avoid misrepresentation, and prompt generation to maintain an up-to-date online catalog.
Additionally, StyleSprint may apply personalized content descriptions based on a user’s shopping
history. This implies that the model may have to provide product descriptions in near-real-time.

Technical constraints: To maximize efficiency, there should not be any noticeable delay (latency) in
responses from the model API. The system should be capable of real-time updates to the online
catalog (as needed), and the hardware should support quick text generation without compromising
quality while remaining cost-effective, especially as the product range expands.



Transparency and openness: Generally, pretrained models from developers who disclose
architectures and training data sources are preferred, as this level of transparency allows StyleSprint
to have a clear understanding of any risks or legal implications associated with model use.
Additionally, any usage restrictions imposed by using models provided as APIs, such as request or
token limitations, should be understood as they could hinder scalability for a growing catalog.

Bias and fairness: Identifying and mitigating biases in model outputs to ensure fair and neutral
representations is crucial, especially given StyleSprint’s diverse target audience. Ensuring that the
generated descriptions are culturally sensitive is of paramount importance. Fair representation
ensures that the descriptions accurately and fairly represent the products to all potential customers,
irrespective of their individual characteristics or social backgrounds.

Suitability of pretraining: The underlying pretraining of generative models plays a significant role
in their ability to generate meaningful and relevant text. Investigating the domains and data on which
the models were pretrained or fine-tuned is important. A model pretrained on a broad dataset may be
versatile but could lack domain-specific nuances. For StyleSprint, a model that is fine-tuned on
fashion-related data or that has the ability to be fine-tuned on such data would be ideal to ensure the
generated descriptions are relevant and appealing.

Quantitative metrics: Evaluating the quality of generated product descriptions for StyleSprint
necessitates a combination of lexical and semantic metrics. Lexical overlap metrics measure the
lexical similarity between generated and reference texts. Specifically, Bilingual Evaluation

Understudy (BLEU) emphasizes n-gram precision, Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) focuses on n-gram recall, and Metric for Evaluation of Translation with

Explicit Ordering (METEOR) aims for a more balanced evaluation by considering synonyms and
stemming. For contextual and semantic evaluation, we use similarity metrics to assess the semantic
coherence and relevance of the generated descriptions, often utilizing embeddings to represent text in
a way that captures its meaning.

We can further refine our assessment of the alignment between generated
descriptions and product images using models such as Contrastive Language-

Image Pretraining (CLIP). Recall that we used CLIP in Chapter 2 to score the
compatibility between captions and a synthesized image. In this case, we can
apply CLIP to measure whether our generated descriptions accurately reflect
the visual aspects of the products. Collectively, these evaluation techniques
provide objective methods for assessing the performance of the generative
model in creating effective product descriptions for StyleSprint:

Qualitative metrics: We introduce qualitative evaluation to measure nuances such as the engaging
and creative nature of descriptions. We also want to ensure we consider equity and inclusivity in the
generated content, which is critical to avoid biases or language that could alienate or offend certain
groups. Methods for engagement assessment could include customer surveys or A/B testing, a
systematic method for testing two competing solutions. Additionally, having a diverse group reviewing
the content for equity and inclusivity could provide valuable insights. These steps help StyleSprint
create captivating, respectful, and inclusive product descriptions, fostering a welcoming environment
for all customers.



Scalability: The computational resources required to run a model and the model’s ability to scale
with increasing data are vital considerations. Models that demand extensive computational power may
not be practical for real-time generation of product descriptions, especially as the product range
expands. A balance between computational efficiency and output quality is essential to ensure cost-
effectiveness and scalability for StyleSprint.

Customization and fine-tuning capabilities: The ability to fine-tune or customize the model on
domain-specific data is crucial for better aligning with brand-specific requirements. Exploring the
availability and ease of fine-tuning can significantly impact the relevance and quality of generated
descriptions, ensuring that they resonate well with the brand identity and product range of
StyleSprint. In practice, some models are too large to fine-tune without considerable resources, even
when efficient methods are applied. We will explore fine-tuning considerations in detail in the next
chapter.

Now that we have carefully considered how we might align the model to the
project’s goals, we are almost ready to evaluate our initial model selection
against a few others to ensure we make the right choice. However, before
benchmarking, we should dedicate time to understanding one vital aspect of
the model selection process: model size and computational complexity.

Model size and computational complexity

The size of a generative model is often described by the number of parameters
it has. Parameters in a model are the internal variables that are fine-tuned
during the training process based on the training data. In the context of neural
networks used in generative models, parameters typically refer to the weights
and biases adjusted through training to minimize the discrepancy between
predicted outputs and actual targets.

Moreover, a model with more parameters can capture more complex patterns
in the data, often leading to better performance on the task at hand. While
larger models often perform better in terms of the quality of the generated text,
there’s a point of diminishing returns beyond which increasing model size
yields marginal improvements. Moreover, the increased size comes with its own
set of challenges:

Computational complexity: Larger models require more computational power and memory, during
both training and inference (the phase where the model is used to make predictions or generate new
data based on the learned parameters). This can significantly increase the costs and the time required
to train and use the model, making it less suitable for real-time applications or resource-constrained
environments.



The number of parameters significantly impacts the computational
complexity of a model. Each parameter in a model is a variable that must be
stored in memory during computation, during both training and inference.
Here are some specific considerations for computational requirements:

Memory and storage: The total size of the model in memory is the product of the number of
parameters and the size of each parameter (typically a 32-bit or 64-bit float). For instance, a
model with 100 million parameters, each represented by a 32-bit float, would require
approximately 400 MB of memory (100 million * 32 bits = 400 million bits = 400 MB). Now
consider a larger model, say with 10 billion parameters; the memory requirement jumps to
40 GB (10 billion * 32 bits = 40 billion bits = 40 GB). This requirement is just for the
parameters and does not account for other data and overheads the model needs for its
operations.

Loading into memory: When a model is used for inference, its parameters must be loaded
into the RAM of the machine it’s running on. For a large model with 10 billion parameters,
you would need a machine with enough RAM to accommodate the entire model, along with
additional memory for the operational overhead, the input data, and the generated output.
Suppose the model is too large to fit in memory. In that case, it may need to be sharded or
distributed across multiple machines or loaded in parts, which can significantly complicate
the deployment and operation of the model and also increase the latency of generating
outputs.

Specialized hardware requirements: Larger models require specialized hardware, such as
powerful GPUs or TPUs, which could increase the project costs. As discussed, models with a large
number of parameters require powerful computational resources for both training and inference.
Hardware accelerators such as GPUs and TPUs are often employed to meet these demands. These
hardware accelerators are designed to handle the parallel computation capabilities needed for the
matrix multiplications and other operations inherent in neural network computations, speeding up the
processing significantly compared to traditional central processing units (CPUs).

Cloud-based infrastructure can alleviate the complexity of setup but often
has usage-based pricing. Understanding infrastructure costs on a granular
level is vital to ensuring that StyleSprint stays within its budget.

Latency: We’ve briefly discussed latency, but it is important to reiterate that larger models typically
have higher latency, which could be a problem for applications that require real-time responses. In
our case, we can process the descriptions as batches asynchronously. However, StyleSprint may have
projects that require fast turnarounds, requiring batches to be completed in hours and not days.

In the case of StyleSprint, the trade-off between model performance and size
must be carefully evaluated to ensure the final model meets the project’s
performance requirements while staying within budget and hardware
constraints. StyleSprint was hoping to have near-real-time responses to provide
personalized descriptions, which typically translates to a smaller model with



less computational complexity. However, it was also important that the model
remains highly accurate and aligns with branding standards for tone and voice,
which may require a larger model trained or fine-tuned on a larger dataset. In
practice, we can evaluate the performance of models relative to size and
complexity through benchmarking.

Benchmarking

Benchmarking is a systematic process used to evaluate the performance of
different generative models against predefined criteria. This process involves
comparing the models on various metrics to understand their strengths,
weaknesses, and suitability for the project. It is an empirical method (based on
observation) to obtain data on how the models perform under similar
conditions, providing insights that can inform the decision-making process for
model selection.

In the StyleSprint scenario, benchmarking can be an invaluable exercise to
navigate the trade-offs between model size, computational complexity, and the
accuracy and creativity of generated descriptions.

For our benchmarking exercise, we can return to our Google Colab prototyping
environment to quickly load various generative models and run them through
tests designed to evaluate their performance based on the considerations
outlined in the previous sections, such as computational efficiency and text
generation quality. Once we have completed our evaluation and comparison,
we can make a few simple changes to our production application code and it
will automatically redeploy. Benchmarking will be instrumental in measuring
the quality of the descriptions relative to the model size and complexity. Recall
that we will measure quality and overall model performance along several
dimensions, including lexical and semantic similarity to a “gold standard” of
human-written descriptions, and a qualitative assessment performed by a
diverse group of reviewers.

The next step is to revisit and adapt our original prototyping code to include a
few challenger models and apply evaluation metrics.

Updating the prototyping environment



For our evaluation steps, there are a few key changes to our original
experimentation setup in Google Colab. First, we will want to make sure we
leverage performance acceleration. Google Colab offers acceleration via GPU
or TPU environments. For this experiment, we will leverage GPU. We will also
want to transition from the Transformers library to a slightly more versatile
library such as Langchain, which allows us to test both open source models
such as GPT-Neo and commercial models such as GPT-3.5.

GPU configuration

Ensure you have a GPU enabled for better performance. Returning to Google
Colab, we can follow these steps to enable GPU acceleration:

1. Click on Runtime in the top menu (see Figure 4.2):

Figure 4.2: Runtime drop-down menu

2. Select Change runtime type from the drop-down menu, as shown in the preceding screenshot.



3. In the pop-up window, select GPU from the Hardware accelerator drop-down menu (see Figure

4.3):

Figure 4.3: Select GPU and click on Save

4. Click on Save.

Now your notebook is set up to use a GPU to significantly speed up the
computations needed for the benchmarking process. You can verify the GPU
availability using the following code snippet:

 

# Verify GPU is available 

import torch 

torch.cuda.is_available()

This code snippet will return True if a GPU is available and False otherwise. This
setup ensures that you have the necessary computational resources to
benchmark various generative models. The utilization of a GPU will be crucial
when it comes to handling large models and extensive computations.

Loading pretrained models with LangChain



In our first simple experiment, we relied on the Transformers library to load an
open source version of GPT. However, for our benchmarking exercise, we want
to evaluate the retail version of GPT-3 alongside open source models. We can
leverage LangChain, a versatile library that provides a streamlined interface, to
access both open source models from providers such as Hugging Face and
closed source models such as OpenAI’s GPT-3.5. LangChain offers a unified API
that simplifies benchmarking and comparison through standardization. Here
are the steps to do it:

1. Install necessary libraries: We begin by installing the required libraries in our Colab environment.
LangChain simplifies the interaction with models hosted on OpenAI and Hugging Face.

 

!pip -q install openai langchain huggingface_hub

2. Set up credentials: We obtain the credentials from OpenAI for accessing GPT-3, GPT-4, or whichever
closed source model we select. We also provide credentials for the Hugging Face Hub, which hosts
over 350,000 open source models. We must store these credentials securely to prevent any
unauthorized access, especially in the case where model usage has an associated cost.

 

import os

 

os.environ['OPENAI_API_KEY'] = 'your_openai_api_key_here'

 

os.environ['HUGGINGFACEHUB_API_TOKEN'] = 

 

    'your_huggingface_token_here'

3. Load models: With LangChain, we can quickly load models and generate responses. The following
example demonstrates how to load GPT-3 and GPT-Neo from Hugging Face:

 

!pip install openai langchain[llms] huggingface_hub

 

from langchain.llms import OpenAI, HuggingFaceHub

 

# Loading GPT-3

 

llm_gpt3 = OpenAI(model_name='text-davinci-003',

 

                  temperature=0.9,

 

                  max_tokens = 256)

 

# Loading Neo from Hugging Face

 

llm_neo = HuggingFaceHub(repo_id=' EleutherAI/gpt-neo-2.7B',

 

                         model_kwargs={"temperature":0.9}

 

)



Notice that we have loaded two models that are significantly different in size.
As the model signature suggests, GPT-Neo was trained on 2.7 billion
parameters. Meanwhile, according to information available from OpenAI,
Davinci was trained on 175 billion parameters. As discussed, a model that is
significantly larger is expected to have captured much more complex patterns
and will likely outperform a smaller model. However, these very large models
are typically hosted by major providers and have higher usage costs. We will
revisit cost considerations later. For now, we can continue to the next step,
which is to prepare our testing data. Our test data should provide a baseline for
model performance that will inform the cost versus performance trade-off.

Setting up testing data

In this context, testing data should comprise product attributes from the
StyleSprint website (e.g., available colors, sizes, materials, etc.) and existing
product descriptions written by the StyleSprint team. The human-written
descriptions serve as the “ground truth,” or the standard against which to
compare the models’ generated descriptions.

We can gather product data from existing datasets by scraping data from e-
commerce websites or using a pre-collected dataset from StyleSprint’s
database. We should also ensure a varied collection of products to test a
model’s capability across different categories and styles. The process of
dividing data into distinct groups or segments based on shared characteristics
is typically referred to as segmentation. Understanding a model’s behavior
across segments should give us an indication of how well it can perform across
the entire family of products. For the purposes of this example, product data is
made available in the GitHub companion to this book
(https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python).

Let’s see how we can extract relevant information for further processing:
 

import pandas as pd 

# Assume `product_data.csv` is a CSV file with product data 

# The CSV file has two columns: 'product_image' and  

# 'product_description'  

# Load the product data 

product_data = pd.read_csv('product_data.csv') 

# Split the data into testing and reference sets 

test_data = product_data.sample(frac=0.2, random_state=42) 

reference_data = product_data.drop(test_data.index) 

# Checkpoint the testing and reference data 

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python


test_data.to_csv('test_data.csv', index=False) 

reference_data.to_csv('reference_data.csv', index=False) 

# Extract reference descriptions and image file paths 

reference_descriptions = / 

    reference_data['product_description'].tolist() 

product_images = reference_data['product_image'].tolist()

We must also format the product data in a way that makes it ready to be input
into the models for description generation. This could be just the product title
or a combination of product attributes:

 

# Assume `product_metadata` is a column in the data that contains the collective 

information about the product including the title of the product and attributes. 

# Format the input data for the models 

model_input_data = reference_data['product_metadata].tolist() 

reference_descriptions = \ 

    reference_data['product_description'].tolist()

Finally, we will ask the model to generate a batch of product descriptions using
each model.

 

from langchain import LLMChain, PromptTemplate 

from tqdm.auto import tqdm 

template = """ 

Write a creative product description for the following product: {product_metadata} 

""" 

PROMPT = PromptTemplate(template=template,  

    input_variables=["product_metadata"]) 

def generate_descriptions( 

    llm: object,  

    prompt: PromptTemplate = PROMPT 

) -> list: 

    # Initialize the LLM chain 

    llm_chain = LLMChain(prompt=prompt, llm=llm) 

    descriptions = [] 

    for i in tqdm(range(len(model_input_data))): 

        description = llm_chain.run(model_input_data[i]) 

        descriptions.append(description) 

    return descriptions 

gpt3_descriptions = generate_descriptions(llm_gpt3) 

gptneo_descriptions = generate_descriptions(llm_neo)

Now, with the testing data set up, we have a structured dataset of product
information, reference descriptions, and images ready for use in the evaluation
steps.

Quantitative metrics evaluation

Now that we have leveraged Langchain to load multiple models and prepared
testing data, we are ready to begin applying evaluation metrics. These metrics
capture accuracy and alignment with product images and will help us assess
how well the models generate product descriptions compared to humans. As



discussed, we focused on two categories of metrics, lexical and semantic
similarity, which provide a measure of how many of the same words were used
and how much semantic information is common to both the human and AI-
generated product descriptions.

In the following code block, we apply BLEU, ROUGE, and METEOR to evaluate the
lexical similarity between the generated text and the reference text. Each of
these has a reference-based assumption. This means that each metric assumes
we are comparing against a human reference. We have already set aside our
reference descriptions (or gold standard) for a diverse set of products to
compare side-by-side with the generated descriptions.

 

!pip install rouge sumeval nltk 

# nltk requires an additional package 

import nltk 

nltk.download('wordnet') 

 from nltk.translate.bleu_score import sentence_bleu 

from rouge import Rouge 

from sumeval.metrics.rouge import RougeCalculator 

from nltk.translate.meteor_score import meteor_score 

def evaluate( 

    reference_descriptions: list,  

    generated_descriptions: list 

) -> tuple: 

    # Calculating BLEU score 

    bleu_scores = [ 

        sentence_bleu([ref], gen)  

        for ref, gen in zip(reference_descriptions, generated_descriptions) 

    ] 

    average_bleu = sum(bleu_scores) / len(bleu_scores) 

    # Calculating ROUGE score 

    rouge = RougeCalculator() 

    rouge_scores = [rouge.rouge_n(gen, ref, 2) for ref, 

        gen in zip(reference_descriptions, 

        generated_descriptions)] 

    average_rouge = sum(rouge_scores) / len(rouge_scores) 

    # Calculating METEOR score 

    meteor_scores = [ meteor_score([ref.split() ], 

        gen.split()) for ref, 

        gen in zip(reference_descriptions, 

        generated_descriptions)] 

    average_meteor = sum(meteor_scores) / len(meteor_scores) 

    return average_bleu, average_rouge, average_meteor 

average_bleu_gpt3, average_rouge_gpt3, average_meteor_gpt3 = \ 

    evaluate(reference_descriptions, gpt3_descriptions) 

print(average_bleu_gpt3, average_rouge_gpt3, average_meteor_gpt3) 

average_bleu_neo, average_rouge_neo, average_meteor_neo = \ 

    evaluate(reference_descriptions, gptneo_descriptions) 

print(average_bleu_neo, average_rouge_neo, average_meteor_neo)

We can evaluate the semantic coherence and relevance of the generated
descriptions using sentence embeddings:

 

!pip install sentence-transformers 



from sentence_transformers import SentenceTransformer, util 

model = SentenceTransformer('paraphrase-MiniLM-L6-v2') 

def cosine_similarity(reference_descriptions, generated_descriptions): 

    # Calculating cosine similarity for generated descriptions 

    cosine_scores = [util.pytorch_cos_sim( 

        model.encode(ref), model.encode(gen)) for ref, 

        gen in zip(reference_descriptions, 

        generated_descriptions)] 

    average_cosine = sum(cosine_scores) / len(cosine_scores) 

    return average_cosine 

average_cosine_gpt3 = cosine_similarity( 

    reference_descriptions, gpt3_descriptions) 

print(average_cosine_gpt3) 

average_cosine_neo = cosine_similarity( 

    reference_descriptions, gptneo_descriptions) 

print(average_cosine_neo)

Alignment with CLIP

We again leverage the CLIP model to evaluate the alignment between
generated product descriptions and corresponding images, similar to our
approach in Chapter 2. The CLIP model, adept at correlating visual and textual
content, scores the congruence between each product image and its associated
generated and reference descriptions. The reference description serves as a
human baseline for accuracy. These scores provide a quantitative measure of
our generative model’s effectiveness at producing descriptions that correspond
well to the product image. The following is a snippet from a component that
processes the generated descriptions combined with corresponding images to
generate a CLIP score. The full component code (including image pre-
processing) is available in the chapter 4 folder of this book’s GitHub repository at
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python).

 

clip_model = "openai/clip-vit-base-patch32" 

def clip_scores(images, descriptions, 

                model=clip_model, 

                processor=clip_processor 

): 

    scores = [] 

    # Process all images and descriptions together 

    inputs = process_inputs(processor, descriptions, images) 

    # Get model outputs 

    outputs = model(**inputs) 

    logits_per_image = outputs.logits_per_image # Image-to-text logits 

    # Diagonal of the matrix gives the scores for each image-description pair 

    for i in range(logits_per_image.size(0)): 

        score = logits_per_image[i, i].item() 

    scores.append(score) 

    return scores 

reference_images = [ 

    load_image_from_path(image_path)  

    for image_path in reference_data.product_image_path 

] 

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python


gpt3_generated_scores = clip_scores( 

    reference_images, gpt3_descriptions 

) 

reference_scores = clip_scores( 

    reference_images, reference_descriptions 

) 

# Compare the scores 

for i, (gen_score, ref_score) in enumerate( 

    zip(gpt3_generated_scores, reference_scores) 

): 

    print(f"Image {i}: Generated Score = {gen_score:.2f},  

        Reference Score = {ref_score:.2f}")

In evaluating product descriptions using the CLIP model, the alignment scores
generated for each image-description pair are computed relative to other
descriptions in the batch. Essentially, CLIP assesses how well a specific
description (either generated or reference) aligns with a given image compared
to other descriptions within the same batch. For example, a score of 33.79
indicates that the description aligns with the image 33.79% better than the
other descriptions in the batch align with that image. In comparing against the
reference, we expect that the scores based on the generated descriptions
should align closely with the scores based on the reference descriptions.

Now that we have calculated lexical and semantic similarity to the reference
scores, and alignment between images and generated descriptions relative to
reference descriptions, we can evaluate our models holistically and interpret
the outcome of our quantitative evaluation.

Interpreting outcomes

We begin with lexical similarity, which gives us an indication of similarity in
phrasing and keywords between the reference and generated descriptions:

BLEU ROUGE METEOR

GPT-3.5 0.147 0.094 0.261

GPT-Neo 0.132 0.05 0.059

Table 4.2: Lexical similarity

In evaluating text generated by GPT-3.5 and GPT-Neo models, we use several
lexical similarity metrics: BLEU, ROUGE, and METEOR. BLEU scores, which
assess the precision of matching phrases, show GPT-3.5 (0.147) slightly



outperforming GPT-Neo (0.132). ROUGE scores, focusing on the recall of
content, indicate that GPT-3.5 (0.094) better captures reference content than
GPT-Neo (0.05). METEOR scores, combining both precision and recall with
synonym matching, reveal a significant lead for GPT-3.5 (0.261) over GPT-Neo
(0.059). Overall, these metrics suggest that GPT-3.5’s generated text aligns
more closely with reference standards, both in word choice and content
coverage, compared to that of GPT-Neo.

Next, we evaluate semantic similarity, which measures how closely the
meanings of the generated text align with the reference text. This assessment
goes beyond mere word-to-word matching and considers the context and
overall intent of the sentences. Semantic similarity evaluates the extent to
which the generated text captures the nuances, concepts, and themes present
in the reference text, providing insight into the model’s ability to understand
and replicate deeper semantic meanings:

Model Mean cosine similarity

GPT-3.5 0.8192

GPT-Neo 0.2289

Table 4.3: Semantic similarity

The mean cosine similarity scores reveal a stark contrast between the two
models’ performance in semantic similarity. GPT-3.5 shows a high degree of
semantic alignment with the reference text. GPT-Neo’s significantly lower score
suggests a relatively poor performance, indicating that the generated
descriptions were fundamentally dissimilar to descriptions written by humans.

Finally, we review the CLIP scores, which tell us how well the generated
descriptions align visually with the corresponding images. These scores,
derived from a model trained to understand and correlate visual and textual
data, provide a measure of the relevance and accuracy of the text in
representing the visual content. High CLIP scores indicate a strong correlation
between the text and the image, suggesting that the generated descriptions are
not only textually coherent but also contextually appropriate and visually
descriptive:



Model Mean CLIP Reference delta

GPT-3.5 26.195 2.815

GPT-Neo 22.647 6.363

Table 4.4: Comparative CLIP score analysis for GPT-3.5 and GPT-Neo models

We calculated the CLIP scores from the reference descriptions, which
represent the average alignment score between a set of benchmark
descriptions and the corresponding images. We then calculated CLIP scores for
each model and analyzed the delta. In concert with our other metrics, GPT-3.5
has a clear advantage over GPT-Neo, aligning more closely with the reference.

Overall, GPT-3.5 appears to significantly outperform GPT-Neo across all
quantitative measures. However, it is worth noting that GPT-3.5 incurs a higher
cost and generally has a higher latency than GPT-Neo. In this case, the
StyleSprint team would conduct a qualitative analysis to accurately determine
whether the GPT-Neo descriptions do not align with brand guidelines and
expectations, therefore making the cost of using the better model worthwhile.
As discussed, the trade-off here is not clear-cut. StyleSprint must carefully
consider that although using a commodity such as GPT-3.5 does not incur
computational costs directly, on-demand costs could increase significantly as
model usage rises.

The contrasting strengths of the two models pose a decision-making challenge.
While one clearly excels in performance metrics and alignment with CLIP,
implying higher accuracy and semantic correctness, the other is significantly
more resource-efficient and scalable, which is crucial for cost-effectiveness. At
this stage, it becomes critical to assess model outcomes qualitatively and to
engage stakeholders to help understand organizational priorities.

With these considerations in mind, we’ll revisit qualitative considerations such
as transparency, bias, and fairness and how they play into the broader picture
of deploying a responsible and effective AI system.

Responsible AI considerations

Addressing implicit or covert societal biases in AI systems is crucial to ensure
responsible AI deployment. Although it may not seem obvious how a simple



product description could introduce bias, the language used can inadvertently
reinforce stereotypes or exclude certain groups. For instance, descriptions that
consistently associate certain body types or skin tones with certain products or
that unnecessarily default to gendered language can unintentionally perpetuate
societal biases. However, with a structured mitigation approach, including
algorithmic audits, increased model transparency, and stakeholder
engagement, StyleSprint can make sure its brand promotes equity and
inclusion.

Addressing and mitigating biases

We present several considerations, as suggested by Costanza-Chock et al. in
Who Audits the Auditors? Recommendations from a field scan of the

algorithmic auditing ecosystem:

Professional environment examination: Creating a supportive professional environment is crucial
for addressing algorithmic fairness. Implementing whistleblower protections facilitates the safe
reporting of biases and unfair practices while establishing processes for individuals to report harms to
ensure these concerns are addressed proactively.

Custom versus standardized audit frameworks: While custom audit frameworks are expected,
considering standardized methods may enhance rigor and transparency in bias mitigation efforts.
Engaging with external auditing entities could offer unbiased evaluations of StyleSprint’s AI systems,
aligning with the observations by Costanza-Chock et al. (2022).

Focusing on equity, not just equality: Equity notions acknowledge differing needs, essential for a
comprehensive approach to fairness. Performing intersectional and small population analyses could
help you to understand and address biases beyond legally protected classes.

Disclosure and transparency: Disclosing audit methods and outcomes can foster a culture of
transparency and continuous improvement. Officially released audits could help you establish best
practices and gain stakeholder trust.

Mixed methods analyses: As presented, a mix of technical and qualitative analyses could provide a
holistic view of the system’s fairness. Engaging non-technical stakeholders could emphasize
qualitative analyses.

Community and stakeholder engagement: Again, involving diverse groups and domain experts in
audits could ensure diverse perspectives are considered in bias mitigation efforts. Establishing
feedback loops with stakeholders could facilitate continuous improvement.

Continuous learning and improvement: Staying updated on emerging standards and best
practices regarding AI fairness is crucial for continuous improvement. Fostering a culture of learning
could help in adapting to evolving fairness challenges and regulatory landscapes, thus ensuring
StyleSprint’s AI systems remain fair and responsible over time.



Transparency and explainability

Generally, explainability in machine learning refers to the ability to understand
the internal mechanics of a model, elucidating how it makes decisions or
predictions based on given inputs. However, achieving explainability in
generative models can be much more complex. As discussed, unlike
discriminative machine learning models, generative models do not have the
objective of learning a decision boundary, nor do they reflect a clear notion of
features or a direct mapping between input features and predictions. This
absence of feature-based decision-making makes traditional explainability
techniques ineffective for generative foundational models such as GPT-4.

Alternatively, we can adopt some pragmatic transparency practices, such as
clear documentation made accessible to all relevant stakeholders, to foster a
shared understanding and expectations regarding the model’s capabilities and
usage.

The topic of explainability is a critical space to watch, especially as generative
models become more complex and their outcomes become increasingly more
difficult to rationalize, which may present unknown risk implications.

Promising research from Anthropic, OpenAI, and others suggests that sparse
autoencoders—neural networks that activate only a few neurons at a time—
could facilitate the identification of abstract and understandable patterns. This
method could help explain the network's behavior by highlighting features that
align with human concepts.

Final deployment

Assuming we have carefully gathered quantitative and qualitative feedback
regarding the best model for the job, we can select our model and update our
production environment to deploy and serve it. We will continue to use FastAPI
for creating a web server to serve our model, and Docker to containerize our
application. However, now that we have been introduced to the simplicity of
LangChain, we will continue to leverage its simplified interface. Our existing
CI/CD pipeline will ensure streamlined automatic deployment and continuous
application monitoring. This means that deploying our model is as simple as
checking-in our latest code. We begin with updating our dependencies list:



1. Update the requirements: Update the requirements.txt file in your project to include the
necessary libraries:

 

fastapi==0.68.0

 

uvicorn==0.15.0

 

openai==0.27.0

 

langchain==0.1.0

2. Update the Dockerfile: Modify your Dockerfile to ensure it installs the updated requirements and
properly sets up the environment for running LangChain with FastAPI:

 

# Use an official Python runtime as a base image

 

FROM python:3.8-slim-buster

 

# Set the working directory in the container to /app

 

WORKDIR /app

 

# Copy the current directory contents into the container at /app

 

COPY . /app

 

# Install any needed packages specified in requirements.txt

 

RUN pip install --no-cache-dir -r requirements.txt

 

# Make port 80 available to the world outside this container

 

EXPOSE 80

 

# Define environment variable

 

ENV NAME World

 

# Run app.py when the container launches

 

CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "80"]

3. Update the FastAPI application: Modify your FastAPI application to utilize Langchain for
interacting with GPT-3.5. Ensure your OpenAI API key is securely stored and accessible to your
application:

 

from fastapi import FastAPI, HTTPException, Request

 

from langchain.llms import OpenAI

 

import os

 

# Initialize FastAPI app



 

app = FastAPI()

 

# Setup Langchain with GPT-3.5

 

llm = OpenAI(model_name='text-davinci-003',

 

             temperature=0.7,

 

             max_tokens=256,

 

             api_key=os.environ['OPENAI_API_KEY'])

 

@app.post("/generate/")

 

async def generate_text(request: Request):

 

    data = await request.json()

 

    prompt = data.get('prompt')

 

    if not prompt:

 

        raise HTTPException(status_code=400,

 

            detail="Prompt is required")

 

    response = llm(prompt)

 

    return {"generated_text": response}

Testing and monitoring

Once the model is deployed, perform necessary tests to ensure the setup works
as expected. Continue to monitor the system’s performance, errors, and other
critical metrics to ensure reliable operation.

By this point, we have updated our production environment to deploy and serve
GPT-3.5, facilitating the generation of text based on the prompts received via
the FastAPI application. This setup ensures a scalable, maintainable, and
secure deployment of our new generative model. However, we should also
explore some best practices regarding application reliability.

Maintenance and reliability

Maintaining reliability in our StyleSprint deployment is critical. As we employ
Langchain with FastAPI, Docker, and CI/CD, it’s essential to set up monitoring,



alerting, automatic remediation, and failover mechanisms. This section outlines
a possible approach to ensure continuous operation and robustness in our
production environment:

Monitoring tools: Integrate monitoring tools within the CI/CD pipeline to continuously track system
performance and model metrics. This step is fundamental for identifying and rectifying issues
proactively.

Alerting mechanisms: Establish alerting mechanisms to notify the maintenance team whenever
anomalies or issues are detected. Tuning the alerting thresholds accurately is crucial to catch issues
early and minimize false alarms.

Automatic remediation: Utilize Kubernetes’ self-healing features and custom scripts triggered by
certain alerts for automatic remediation. This setup aims to resolve common issues autonomously,
reducing the need for human intervention.

Failover mechanisms: Implement a failover mechanism by setting up secondary servers and
databases. In case of primary server failure, these secondary setups take over to ensure continuous
service availability.

Regular updates via CI/CD: Employ the CI/CD pipeline for managing, testing, and deploying
updates to LangChain, FastAPI, or other components of the stack. This process keeps the deployment
updated and secure, reducing the maintenance burden significantly.

By meticulously addressing each of these areas, you’ll be laying down a solid
foundation for a reliable and maintainable StyleSprint deployment.

Summary

This chapter outlined the process of transitioning the StyleSprint generative AI
prototype to a production-ready deployment for creating engaging product
descriptions on an e-commerce platform. It started with setting up a robust
Python environment using Docker, GitHub, and CI/CD pipelines for efficient
dependency management, testing, and deployment. The focus then shifted to
selecting a suitable pretrained model, emphasizing alignment with project
goals, computational considerations, and responsible AI practices. This
selection relied on both quantitative benchmarking and qualitative evaluation.
We then outlined the deployment of the selected model using FastAPI and
LangChain, ensuring a scalable and reliable production environment.

Following the strategies outlined in this chapter will equip teams with the
necessary insights and steps to successfully transition their generative AI
prototype into a maintainable and value-adding production system. In the next
chapter, we will explore fine-tuning and its importance in LLMs. We will also



weigh in on the decision-making process, addressing when it is more beneficial
to fine-tune versus zero or few-shot prompting.



Part 2: Practical Applications of Generative AI

This part focuses on the practical applications of generative AI, including fine-
tuning models for specific tasks, understanding domain adaptation, mastering
prompt engineering, and addressing ethical considerations. It aims to provide
hands-on insights and methodologies for effectively implementing and
leveraging generative AI in various contexts with a focus on responsible
adoption.

This part contains the following chapters:

Chapter 5, Fine-Tuning Generative Models for Specific Tasks

Chapter 6, Understanding Domain Adaptation for Large Language Models

Chapter 7, Mastering the Fundamentals of Prompt Engineering

Chapter 8, Addressing Ethical Considerations and Charting a Path toward Trustworthy Generative AI



5

Fine-Tuning Generative Models for Specific Tasks

In our narrative with StyleSprint, we described using a pre-trained generative
AI model for creating engaging product descriptions. While this model showed
adeptness in generating diverse content, StyleSprint’s evolving needs require a
shift in focus. The new challenge is not just about producing content but also
about engaging in specific, task-oriented interactions such as automatically
answering customer’s specific questions about the products described.

In this chapter, we introduce the concept of fine-tuning, a vital step in adapting
a pre-trained model to perform specific downstream tasks. For StyleSprint, this
means transforming the model from a versatile content generator to a
specialized tool capable of providing accurate and detailed responses to
customer questions.

We will explore and define a range of scalable fine-tuning techniques,
comparing them with other approaches such as in-context learning. We will
demonstrate advanced fine-tuning methods, including parameter-efficient fine-
tuning and prompt tuning, to demonstrate how they can fine-tune a model’s
abilities for specific tasks such as Q&A.

By the end of this chapter, we will have trained a language model to answer
questions and do so in a way that aligns with StyleSprint’s brand guidelines.
However, before we explore the mechanics of fine-tuning and its importance in
our application, we will revisit the history of fine-tuning in the context of LLMs.

Foundation and relevance – an introduction to

fine-tuning

Fine-tuning is the process of leveraging a model pre-trained on a large dataset
and continuing the training process on a smaller, task-specific dataset to
improve its performance on that task. It may also involve additional training
that adapts a model to the nuances of a new domain. The latter is known as
domain adaptation, which we will cover in Chapter 6. The former is typically
referred to as task-specific fine-tuning, and it can be performed to accomplish



several tasks, including Q&A, summarization, classification, and many others.
For this chapter, we will focus on task-specific fine-tuning to improve a general-
purpose model’s performance when answering questions.

For StyleSprint, fine-tuning a model to handle a specific task such as answering
customer inquiries about products introduces unique challenges. Unlike
generating product descriptions, which primarily involves language generation
using an out-of-the-box pre-trained model, answering customer questions
requires the model to have an extensive understanding of product-specific data
and should have a brand-aware voice. Specifically, the model must accurately
interpret and respond to questions about product features, sizes, availability,
user reviews, and many other details. It should also produce answers consistent
with StyleSprint’s distinct brand tone. This task requires both generalized
natural language proficiency (from pre-training) and robust knowledge of
product metadata and customer feedback, accomplished through fine-tuning.

Models such as GPT initially learn to predict text through an unsupervised
learning process that involves being trained on wide-ranging and vast datasets.
This pre-training phase exposes the model to a diverse array of texts, enabling
it to gain a broad understanding of language, including syntax, grammar, and
context, without any specific task-oriented guidance. However, fine-tuning
applies task-oriented, supervised learning to refine the model’s capabilities to
accomplish the specified task – specifically, semi-supervised learning, which, as
described by Radford et al. (2018), involves adapting the model to a specific
supervised task by exposing it to a dataset comprising input sequences (x1, ...,
xm) and corresponding labels (y).

Throughout the chapter, we will detail the fine-tuning process, including how to
selectively train the model on a curated dataset of product-related information
and customer interactions, enabling it to respond with the informed, brand-
aligned precision that customers expect. However, fine-tuning an LLM, which
could have billions of parameters, would typically require an enormous number
of resources and time. This is where advanced techniques such as Parameter-

Efficient Fine-Tuning  (PEFT) become particularly valuable in making fine-
tuning accessible.

PEFT



Traditional fine-tuning methods become increasingly impractical as the model
size grows due to the immense computational resources and time required to
train and update all model parameters. For most businesses, including larger
organizations, a classical approach to fine-tuning is cost-prohibitive and,
effectively, a non-starter.

Alternatively, PEFT methods modify only a small subset of a model’s
parameters, reducing the computational burden while still achieving state-of-
the-art performance. This method is advantageous for adapting large models to
specific tasks without extensive retraining.

One such PEFT method is the Low-Rank Adaptation (LoRA) methodology,
developed by Hu et al. (2021).

LoRA

The LoRA method focuses on selectively fine-tuning specific components within
the Transformer architecture to enhance efficiency and effectiveness in LLMS.
LoRA targets the weight matrices found in the self-attention module of the
Transformer, which, as discussed in Chapter 3, are key to its functionality and
include four matrices: w  (query), w  (key), w  (value), and w  (output).
Although these matrices can be divided into multiple heads in a multi-head
attention setting – where each head represents one of several parallel attention
mechanisms that process inputs independently – LoRA treats them as singular
matrices, simplifying the adaptation process.

LoRA’s approach involves adapting only the attention weights for downstream
tasks, while the weights in the other component of the Transformer, the feed-

forward network (FFN), are unchanged. This decision to focus exclusively on
the attention weights and freeze the FFN is made for simplicity and parameter
efficiency. By doing so, LoRA ensures a more manageable and resource-
efficient fine-tuning process, avoiding the complexities and demands of
retraining the entire network.

This selective fine-tuning strategy enables LoRA to effectively tailor the model
for specific tasks while maintaining the overall structure and strengths of the
pre-trained model. This makes LoRA a practical solution for adapting LLMs to
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new tasks with a reduced computational burden without requiring
comprehensive parameter updates across the entire model (Liu et al., 2021).

Building upon the foundation of LoRA, Adaptive Low-Rank Adaptation

(AdaLoRA), as introduced in a study by Liu et al. (2022), represents a further
advancement in PEFT methods. The key difference between LoRA and
AdaLoRA lies in (as the name suggests) its adaptiveness. While LoRA applies a
consistent, low-rank approach to fine-tuning across the model, AdaLoRA tailors
the updates to the needs of each layer, offering a more flexible and potentially
more effective way to fine-tune large models for specific tasks.

AdaLoRA

AdaLoRA’s key innovation lies in its adaptive allocation of the parameter

budget among the weight matrices of the pre-trained model. Many PEFT
methods tend to distribute the parameter budget evenly across all pre-trained
weight matrices, potentially neglecting the varying importance of different
weight parameters. AdaLoRA overcomes this by assigning importance scores to
these weight matrices and allocating the parameter budget accordingly.
Importance scores in the context of AdaLoRA are metrics used to determine
the significance (or importance) of different weight parameters in a model,
guiding the allocation of the parameter budget more effectively during fine-
tuning.

NOTE

Parameter budget refers to the predefined limit on the number of additional parameters that can be

introduced during the fine-tuning of a pre-trained model. This budget is set to ensure that the model’s

complexity does not increase significantly, which can lead to challenges such as overfitting, increased

computational costs, and longer training times.

Additionally, AdaLoRA applies singular value decomposition (SVD) to
efficiently organize the incremental updates made during the model’s fine-
tuning process. SVD allows for the effective pruning of singular values
associated with less critical updates, reducing the overall parameter budget
required for fine-tuning. It is important to note that this method also avoids the
need for computationally intensive exact computations, making the fine-tuning
process more efficient.



AdaLoRA has been empirically tested across various domains, including natural
language processing, question-answering, and natural language generation.
Extensive experiments have demonstrated its effectiveness in improving model
performance, particularly in question-answering tasks. The adaptability and
efficiency of AdaLoRA make it an ideal choice for applications requiring precise
and efficient model adjustments for complex tasks.

In the case of StyleSprint, AdaLoRA presents an opportunity to fine-tune its
language model for answering customer questions without the considerable
overhead that would be incurred by traditional fine-tuning, which would
require adjusting all of the model parameters. By adopting AdaLoRA,
StyleSprint can efficiently adapt its model to handle nuanced customer
inquiries by adjusting significantly fewer parameters. Specifically, AdaLoRA’s
adaptive allocation of parameter budgets means that StyleSprint can optimize
its model for the specific nuances of customer queries without using extensive
computational resources.

By the end of this chapter, we will have fine-tuned an LLM using AdaLoRA for
our Q&A task. However, we should first decide whether fine-tuning is truly the
right approach. Prompt-based LLMs offer a viable alternative known as in-
context learning, where the model can learn from examples given in the
prompt, meaning that the prompt would contain the customer’s question paired
with a few key historical examples of how other questions were answered. The
model can infer from the examples how to answer the question at hand in a way
that is consistent with the examples. In the next section, we will explore the
benefits and drawbacks of in-context learning to help us determine whether
fine-tuning is the best approach to enable a model to answer very specific
questions.

In-context learning

In-context learning is a technique where the model generates responses based
on a few examples provided in the input prompt. This method leverages the
model’s pre-trained knowledge and the specific context or examples included in
the prompt to perform tasks without the need for parameter updates or
retraining. The general approach, detailed in Language Models are Few-Shot

Learners by Brown et al. (2020), describes how the extensive pre-training of



these models enables them to perform tasks and generate responses based on a
limited set of examples paired with instructions embedded within prompts.
Unlike traditional methods that require fine-tuning for each specific task, in-
context learning allows the model to adapt and respond based on the additional
context provided at inference.

Central to in-context learning is the concept of few-shot prompting, which is
critical for enabling models to adapt to and perform tasks without additional
training data, relying instead on their pre-trained knowledge and the context
provided within input prompts. For context, we’ll describe how an LLM
typically works, which is known as the zero-shot approach, and contrast it to in-
context learning, which uses the few-shot approach:

Zero-shot prompting: Models such as GPT respond to instruction based on their vast pre-training
and the specific task or instruction described in the input prompt. These models estimate a
conditional probability distribution over possible outputs for a given input sequence, x. The model
calculates the likelihood of a potential output sequence, y, expressed as P(y|x). This computation is
performed without prior examples specific to the task, relying entirely on the model’s general pre-
training. Meaning, the zero-shot approach has no specific context apart from its general knowledge.
For example, if we were to ask Are winter coats available in children’s sizes?, the model could not
provide a specific answer about StyleSprint’s inventory. It could only provide some generic answer.

Few-shot prompting: Using the few-shot approach, we provide the model with a prompt paired with
a few examples. These examples are concatenated to the prompt (represented as x) to form an
extended input sequence. So, our question Are winter coats available in children’s sizes? might be
paired with a few examples such as the following:

Q: Do you sell anything in children’s sizes?

A: Any items for children are specifically listed on the “StyleSprint for Kids” page.

Q: What do you offer for kids?

A: StyleSprint offers a variety of children’s fashions on its “StyleSprint for Kids”
page.

The LLM then computes the probability of generating a specific output
sequence, y, given this extended input sequence, x. Mathematically, this can be
conceptualized as the model estimating the joint probability distribution of y
and x (where x includes both the prompt and the few-shot examples, as
demonstrated previously). The model uses this joint probability distribution to
generate a response consistent with the instructions paired with the examples
given in the input sequence.



In both cases, the model’s ability to adapt its output based on the given context,
whether with zero examples or a few, demonstrates the flexibility and
sophistication of its underlying architecture and training. However, the few-
shot approach allows the LLM to learn from the very specific examples
provided.

Let’s consider how StyleSprint could apply in-context learning to answer
customer queries. Performance using in-context learning (or the few-shot
approach) consistently reflects significant gains over zero-shot behavior (Brown
et al., 2020). We can expand our prior example to where a customer asks about
the availability of a specific product. Again, the StyleSprint team could
systematically append a few examples to each prompt as follows.

Here is the prompt: Respond to the following {question} about product availability.

These are some examples:

Example 1:

Customer query: Do you carry black leather handbags?

AI response: Give me a moment while I retrieve information about that particular
item.

Example 2:

Customer query: Do you have the silk scarves in blue?

AI response: Let me search our inventory for blue silk scarves.

StyleSprint can provide examples that effectively help the model understand
the nature of the inquiry and generate a response that is informative and
aligned with the company’s policies and product offerings. In this example, we
see that the responses are intended to be paired with a search component. This
is a common approach and can be accomplished using a technique called
Retrieval Augmented Generation (RAG), which is a component that
facilitates retrieval of real-time data to inform the generated response.
Combining a few-shot in-context learning approach with RAG could ensure that
the system provides a logical and specific answer.

In-context learning using a few-shot approach allows the model to rapidly adapt
to various customer queries using a limited set of examples. When augmented
with RAG, StyleSprint could potentially satisfy their use case and reduce the



time and resources needed to fine-tune. However, this approach must be
weighed against the depth of specialization and consistency of task-specific
fine-tuning, which, as described, could also produce highly accurate answers
that fit the brand tone.

In the next section, we will formulate metrics that help us draw a direct
comparison to guide StyleSprint in making an informed decision that best suits
its customer service objectives and operational framework.

Fine-tuning versus in-context learning

We learned how in-context learning could allow StyleSprint’s model to handle a
diverse range of customer queries without requiring extensive retraining.
Specifically, a few-shot approach combined with RAG could facilitate quick
adaptation to new inquiries, as the model can generate responses based on a
few examples. However, the effectiveness of in-context learning heavily relies
on the quality and relevance of the examples provided in the prompts. Its
success would also rely on the implementation of RAG. Moreover, without fine-
tuning, responses may lack consistency or may not adhere as strictly to
StyleSprint’s brand tone and customer service policies. Finally, depending
entirely on a generative model without fine-tuning may inadvertently introduce
bias, as discussed in Chapter 4.

In practice, we have two very comparable and viable approaches. However, to
make an informed decision, we should first perform a more in-depth
comparison using quantitative methods.

To impartially assess the efficacy of in-context learning compared to fine-
tuning, we can measure the quality and consistency of the generated
responses. We can accomplish this using established and reliable metrics to
compare outcomes from each of the approaches. Like prior evaluations, we will
want to apply quantitative and qualitative methods applied across the following
key dimensions:

Alignment with human judgment: We can again apply semantic similarity to provide a quantitative
measure of how often the model’s responses are correct or relevant based on a reference answer
written by a human.

StyleSprint’s brand communication experts can review a subset of the
responses to provide a qualitative evaluation of the response accuracy and



alignment with brand tone and voice.

Consistency and stability: It is important to measure the degree to which questions are answered
consistently each time despite minor variations in how the question is posed. Again, we can leverage
semantic similarity to compare each new output to the prior when the input is held constant.

In addition to evaluating the quality of model responses for each approach, we
can also directly compare the operational and computational overhead required
for each.

For fine-tuning, we will need to understand the overhead involved in training
the model. While the PEFT method will significantly reduce the training effort,
there could be considerably more infrastructure-related costs compared to in-
context learning, which requires no additional training. Alternatively, for in-
context learning, commoditized models such as OpenAI’s GPT-4 have a per-
token cost model. StyleSprint must also consider the cost of tokens required to
embed a sufficient number of few-shot examples in the prompt.

In both cases, StyleSprint will incur some operational costs to create best-in-
class examples written by humans that can be used as a “gold standard” in
either the few-shot approach or for additional model training.

By conducting these comparative tests and analyzing the results, StyleSprint
will gain valuable insights into which approach – in-context learning or fine-
tuning – best aligns with its operational goals and customer service standards.
This data-driven evaluation will inform the decision on the optimal AI strategy
for enhancing their customer service experience. We will implement these
comparisons in the practice project that follows.

Practice project: Fine-tuning for Q&A using PEFT

For our practice project, we will experiment with AdaLoRA to efficiently fine-
tune a model for a customer query and compare it directly to the output of a
state-of-the-art (SOTA) model using in-context learning. Like the previous
chapter, we can rely on a prototyping environment such as Google Colab to
complete the evaluation and comparison of the two approaches. We will
demonstrate how to configure model training to use AdaLoRA as our PEFT
method.



Background regarding question-answering fine-

tuning

Our project utilizes the Hugging Face training pipeline library, a widely
recognized resource in the machine learning community. This library offers a
variety of pre-built pipelines, including one for question-answering, which
allows us to fine-tune pre-trained models with minimal setup. Hugging Face
pipelines abstract much of the complexity involved in model training, making it
accessible for developers to implement advanced natural language processing
tasks directly and efficiently In particular, this pipeline behaves as an interface
to a transformer model with a specific head for question-answering tasks.
Recall that when we fine-tune a transformer model, we keep the architecture of
the model – including the self-attention mechanism and the transformer layers –
but we train the model’s parameters on a specific task, which, in this case,
results in a model refined specifically to answer questions. Recall our practice
project in Chapter 3 where the resulting model was a translator; we used a
translator head to accomplish translation from English to French. For this
project, the “head” is aligned to learn patterns in question-answering data.

However, when using a question-answer training pipeline, it is important to
understand that the model does not simply memorize question-answer pairs, it
learns the connection between questions and answers. Moreover, to answer
appropriately, the model cannot rely entirely on training. It also requires
additional context as input to compose a relevant answer. To understand this
further, we decompose the model inferencing step as follows:

1. When feeding a question to a model, we must also include context relevant to the topic.

2. The model then determines the most relevant part of the context that answers the question. It does
this by assigning probability scores to each token (word or sub-word) in the context.

3. The model “thinks” of the context as a potential source for the answer and assigns each token two
scores: one score for being the start of the answer, and another for being the end of the answer.

4. The token with the highest “start” score and “end” score is then chosen to form the answer span. The
span is what is presented to the user.

To provide a concrete example, if we ask the model, Does StyleSprint have any
leather jackets? and provide a context of StyleSprint sells a variety of coats, jackets
and outerwear, the model will process this context and identify that the most likely
answer is something like Yes, StyleSprint sells a variety of outerwear. However, if



the answer to a question is not included in the provided context, the model
cannot generate a reliable answer. Additionally, if the context is too unspecific,
the model may provide a more generic answer. Like in-context learning, the
fine-tuned approach for question-answering requires relevant context. This
means that, in practice, the model must be integrated with a search component
that can retrieve additional context to pair with each question.

Consider our leather jacket example. When a question is received, the system
could perform a search of its knowledge base and retrieve any contextual
information relevant to a leather jacket (e.g., a paragraph about outerwear).
Again, since the model was trained to answer questions in a way that aligns
with the brand tone, it will extract the relevant information from the context
provided to formulate an appropriate answer. Not only will integration with
search provide the model with the context it needs but it will also allow the
model to have up-to-date and real-time information.

Additionally, we might incorporate a confidence threshold, where the model
only gives an answer if it assigns a high enough probability to the start and end
tokens. If the highest probability is below this threshold, we might say the
model does not know, or request more information. Overall, the model efficacy
relies heavily on the quality and size of the training data as well as the
relevance of the context with regard to the questions posed.

Now that we have a better understanding of how fine-tuning for question-
answering works and what to expect when using the question-answering
pipeline from Hugging Face, we can begin to write our implementation.

Implementation in Python

First and foremost, we install the required libraries:
 

!pip install transformers peft sentence-transformers

Then, we import the question-answering modules from the transformers
library. For our project, we will use Google’s Flan T5 (small), which is
considered a SOTA alternative to GPT 3.5. As one of our goals continues to be
to measure the performance versus efficiency trade-off, we begin with the
smallest version of Flan T5, which has 80M parameters. This will enable faster
training and more rapid iteration. However, please note that even a small



model trained over a small number of epochs will require a high-RAM runtime
environment:

 

from transformers import ( 

    AutoModelForQuestionAnswering, AutoTokenizer) 

model_name = " google/flan-t5-small" 

tokenizer = AutoTokenizer.from_pretrained(model_name) 

model = AutoModelForQuestionAnswering.from_pretrained(model_name)

With the pre-trained model instantiated, we can now configure the model to
adapt its training process to use AdaLoRA, which, as we’ve learned, is
specifically designed to allocate the parameter budget efficiently during the
fine-tuning process:

 

from peft import AdaLoraConfig 

# Example configuration; adjust parameters as needed 

adapter_config = AdaLoraConfig(target_r=16) 

model.add_adapter(adapter_config)

As discussed, fine-tuning relies heavily on the quality and size of the training
data. In the StyleSprint scenario, the company could aggregate question-
answer pairs from its FAQ page, social media, and customer service
transcripts. For this exercise, we will construct a simple dataset that looks
similar to the following:

 

demo_data = [{ 

"question": "What are the latest streetwear trends available at Stylesprint?", 

  "answer": "Stylesprint's latest streetwear collection includes hoodies, and graphic 

tees, all inspired by the latest hip-hop fashion trends." 

... 

}]

However, in order to integrate our dataset with the question-answer pipeline,
we should first understand the Trainer class. The Trainer class in the Hugging
Face transformers library expects the training and evaluation datasets to be in
a specific format, usually as a PyTorch Dataset object, not just as simple lists of
dictionaries. Further, each entry in the dataset needs to be tokenized and
structured with the necessary fields such as input_ids, attention_mask, and, for
question-answering tasks, start_positions and end_positions. Let us explore these
in more detail:

input_ids: This is a sequence of integers that represent the input sentence in the model. Each word
or sub-word in the sentence is converted into a unique integer or ID. Recall from earlier chapters that
this process is known as tokenization. The words or tokens are looked up in the vocabulary of the
language model and the corresponding integer is then used in the model. For example, a sentence
such as I love Paris might be converted into something like [101, 354, 2459].



attention_mask: An attention mask is a sequence of binary values where 1s indicate real tokens and
0s indicate padding tokens. In other words, in the places where 1s are present, the model will
understand that those places need attention and the places with 0s will be ignored by the model. This
is crucial when dealing with sentences of varying lengths and dealing with batches of sentences in
training models.

start_positions and end_positions: These are for question-answering tasks. They represent the
indices of the start and end tokens of the answer in the tokenized form of the context. For example, in
the context Paris is the capital of France, if the question is What is the capital of France? and the
answer given is Paris, after tokenization, start_position and end_position will correspond to the
index of Paris in the context.

With that understanding, we can create a class that adapts our dataset to meet
the expectations of the trainer, as follows:

 

from torch.utils.data import Dataset 

class StylesprintDataset(Dataset): 

   def __init__(self, tokenizer, data): 

       tokenizer.pad_token = tokenizer.eos_token 

       self.tokenizer = tokenizer 

       self.data = data

For the complete custom dataset class code, visit this book’s GitHub repository
at https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python.

With the training set prepared and our pipeline configured to apply the
AdaLoRA method, we can finally move to the training step. For this project, we
will configure the training to run for just a few epochs, but in the StyleSprint
scenario, a much more robust training process would be required:

 

from transformers import Trainer, TrainingArguments 

# Split the mock dataset into training and evaluation sets (50/50) 

train_data = StylesprintDataset( 

    tokenizer, demo_data[:len(demo_data)//2]) 

eval_data = StylesprintDataset( 

    tokenizer, demo_data[len(demo_data)//2:]) 

# Training arguments 

training_args = TrainingArguments( 

    output_dir="./results", 

    num_train_epochs=10, 

    per_device_train_batch_size=16, 

    per_device_eval_batch_size=64, 

    warmup_steps=500, 

    weight_decay=0.01, 

    logging_dir="./logs", 

    logging_steps=10, 

) 

# Initialize the Trainer 

trainer = Trainer( 

    model=model, 

    args=training_args, 

    train_dataset=train_data, 

    eval_dataset=eval_data 

) 

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python


# Start training 

trainer.train()

For our simple experiment, we do not expect a highly performant model;
however, we can learn how to interpret the training output, which describes
how well the model performed on the evaluation samples. The Trainer class will
output a training summary that includes the loss metric.

Training loss

Training loss is a measure of how well the model is performing; a lower loss
indicates better performance. In many deep learning models, especially those
dealing with complex tasks such as language understanding, it’s common to
start with a relatively high loss. The expectation is that this value should
decrease as training progresses.

In the early stages of training, a high loss isn’t a cause for alarm as it
commonly decreases as the model continues to learn. However, if the loss
remains high, this signals that additional training may be needed. If the loss
continues to be high after prolonged training, the learning rate and other
hyperparameters may require adjustment, as an inappropriate learning rate
can impact the model’s learning effectiveness. Moreover, the quality and
quantity of your training data should be evaluated as insufficient data can
hinder the training. For example, as we only use a few examples for the
experiment, we expect a relatively high loss.

The next step is to use our newly fine-tuned model to infer or predict. We
should also secure our trained model parameters so we can reuse it without
retraining:

 

import torch 

# save parameters 

model.save_pretrained("./stylesprint_qa_model") 

def ask_question(model, question, context): 

   # Tokenize the question and context 

   inputs = tokenizer.encode_plus(question, context, 

        add_special_tokens=True, return_tensors="pt") 

   # Get model predictions 

   with torch.no_grad(): 

       outputs = model(**inputs) 

   # Get the start and end positions 

   answer_start_scores = outputs.start_logits 

   answer_end_scores = outputs.end_logits 

   # Find the tokens with the highest `start` and `end` scores 

   answer_start = torch.argmax(answer_start_scores) 

   answer_end = torch.argmax(answer_end_scores) + 1 

   # Convert the tokens to the answer string 



   answer = tokenizer.convert_tokens_to_string( 

        tokenizer.convert_ids_to_tokens( 

            inputs["input_ids"][0][answer_start:answer_end] 

            ) 

        ) 

   return answer 

question = "What is the return policy for online purchases?" 

context = """Excerpt from return policy returned from search.""" 

answer = ask_question(model, question, context) 

print(answer)

As discussed, we introduce context along with a question to the model, so that
it can identify which fragment of the context responds most appropriately to
the query. Consequently, we may want to consider integrating a vector search
system (such as RAG) to automatically identify relevant documents from large
datasets based on semantic similarities to a query. These search results may
not provide specific answers, but the trained QA model can extract more
precise answers from the results.

With this hybrid approach, the vector search system first retrieves documents
or text segments that are semantically related to the query. The QA model then
analyzes this context to identify the precise answer that aligns with
StyleSprint’s guidelines and expectations.

Evaluation of results

To evaluate our model outcomes, StyleSprint might apply the qualitative and
quantitative approaches we have discussed in the chapter already. For the
purpose of our experiment, we can measure the output of the model to a golden
standard response using a simple measure for semantic similarity:

 

from sentence_transformers import SentenceTransformer, util 

import pandas as pd 

# Example of a gold standard answer written by a human 

gs = "Our policy at Stylesprint is to accept returns on online purchases within 30 

days, with the condition that the items are unused and remain in their original 

condition." 

# Example of answer using GPT 3.5 with in-context learning reusing a relevant subset of 

the training data examples 

gpt_35 = "Stylesprint accepts returns within 30 days of purchase, provided the items 

are unworn and in their original condition." 

# Load your dataset 

dataset = pd.DataFrame([ 

   (gs, gpt_35, answer) 

])# pd.read_csv("dataset.csv") 

dataset.columns = ['gold_standard_response', 

    'in_context_response', 'fine_tuned_response'] 

# Load a pre-trained sentence transformer model 

eval_model = SentenceTransformer('all-MiniLM-L6-v2') 

# Function to calculate semantic similarity 



def calculate_semantic_similarity(model, response, gold_standard): 

    response_embedding = model.encode( 

        response, convert_to_tensor=True) 

    gold_standard_embedding = model.encode(gold_standard, 

        convert_to_tensor=True) 

    return util.pytorch_cos_sim(response_embedding, 

        gold_standard_embedding).item() 

# Measure semantic similarity 

dataset['in_context_similarity'] = dataset.apply( 

    lambda row:calculate_semantic_similarity( 

        eval_model, row['in_context_response'], 

        row['gold_standard_response'] 

    ), axis=1) 

dataset['fine_tuned_similarity'] = dataset.apply( 

    lambda row:calculate_semantic_similarity( 

        eval_model, row['fine_tuned_response'], 

        row['gold_standard_response'] 

    ), axis=1) 

# Print semantic similarity 

print("Semantic similarity for in-context learning:",  

    dataset['in_context_similarity']) 

print("Semantic similarity for fine-tuned model:",  

    dataset['fine_tuned_similarity'])

The results of our evaluation are as follows:

PEFT Flan T5 GPT 3.5T

Fine-tuned In-context

Semantic Similarity 0.543 0.91

Table 5.1: Semantic similarity scores for fine-tuned Flan and GPT 3.5 Turbo, respectively

Undoubtedly, the in-context learning arrived at an answer that was much closer
to our gold standard reference. However, the fine-tuned model was not far
behind. This tells us that with a more robust training dataset and considerably
more epochs, the fine-tuned model could be comparable to GPT 3.5. With more
iteration and experimentation, StyleSprint could have a very robust fine-tuned
model to answer very specific questions for its customers.

Summary

In this chapter, we focused on the strategic decision-making process between
fine-tuning and in-context learning for StyleSprint’s AI-driven customer service
system. While in-context learning, particularly few-shot learning, offers
adaptability and resource efficiency, it may not consistently align with
StyleSprint’s brand tone and customer service guidelines. This method relies



heavily on the quality and relevance of the examples provided in the prompts,
requiring careful crafting to ensure optimal outcomes.

On the other hand, PEFT methods such as AdaLoRA, offer a more focused
approach to adapt a pre-trained model to the specific demands of customer
service queries. PEFT methods modify only a small subset of a model’s
parameters, reducing the computational burden while still achieving high
performance. This efficiency is crucial for real-world applications where
computational resources and response accuracy are both key considerations.

Ultimately, the choice between in-context learning and fine-tuning is not just a
technical decision but also a strategic one, deeply intertwined with the
company’s operational goals, resource allocation, and the desired customer
experience. The chapter suggests conducting comparative tests to assess the
efficacy of both approaches, evaluating outcomes at scale through reliable
metrics. This data-driven evaluation will inform StyleSprint’s decision on the
optimal AI strategy for enhancing their customer service experience.

In summary, we now have a more complete understanding of the implications
of fine-tuning versus in-context learning in LLMs, specifically in the context of
customer service. It highlights the need for a company like StyleSprint to make
a well-informed strategic decision, balancing the depth of specialization and
consistency offered by fine-tuning against the adaptability and efficiency of in-
context learning.

In the next chapter, we will explore PEFT for domain adaptation where the
outcome of our training is a general-purpose model refined to understand a
highly specific domain like finance or law.
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6

Understanding Domain Adaptation for Large

Language Models

In the previous chapter, we examined how Parameter-Efficient Fine-Tuning

(PEFT) enhances large language models (LLMs) for specific tasks such as
question-answering. In this chapter, we will be introduced to domain
adaptation, a distinct fine-tuning approach. Unlike task-specific tuning, domain
adaptation equips models to interpret language that’s unique to specific
industries or domains, addressing the gap in LLMs’ understanding of
specialized language.

To illustrate this, we’ll introduce Proxima Investment Group, a hypothetical
digital-only investment firm aiming to adapt an LLM to its specific financial
language using internal data. We’ll demonstrate how modifying the LLM to
process the specific terminology and nuances typical in Proxima’s environment
enhances the model’s relevance and effectiveness in the financial domain.

We’ll also explore the practical steps Proxima might take, such as selecting
relevant internal datasets for training, applying PEFT methods such as Low-

Rank Adaptation (LoRA) to adapt the model efficiently, and using masking
techniques to refine the model’s comprehension. Then, we’ll explore how
Proxima can evaluate the success of this domain adaptation, assessing the
model’s performance in tasks such as analyzing financial trends, responding to
client inquiries, and generating reports that align with Proxima’s internal
standards and market position.

By the end of this chapter, we will clearly understand the theoretical
underpinnings of domain adaptation and its real-world application, particularly
in a complex sector such as finance, where the model’s depth of domain
understanding can significantly impact business outcomes.

Let’s begin by demystifying the concept, exploring its technical underpinnings,
and discussing its importance in accomplishing domain-specific business
objectives.



Demystifying domain adaptation – understanding

its history and importance

In the context of generative LLMs, domain adaptation specifically tailors
models such as BLOOM, which have been pre-trained on extensive,
generalized datasets (such as news articles and Wikipedia entries) for
enhanced understanding of texts from targeted sectors, including biomedical,
legal, and financial fields. This type of refinement can be pivotal as LLMs,
despite their vast pre-training, may not inherently capture the intricate details
and specialized terminology inherent to these domains. This adaptation
involves a deliberate process of realigning the model’s learned patterns to the
linguistic characteristics, terminologies, and contextual nuances prevalent in
the target domain.

Domain adaptation operates within the ambit of transfer learning. In this
broader paradigm, a model’s learnings from one task are repurposed to
improve its efficacy on a related yet distinct task. This approach capitalizes on
the model’s pre-learned features to improve its efficiency and accuracy on the
subsequent task, markedly reducing its reliance on large volumes of domain-
specific data and computational resources. Specifically, we begin with a model
that’s been trained on broad datasets and use it as a starting point to adapt to
specialized domains thereby augmenting their accuracy, relevance, and
applicability to more targeted use cases.

In practice, several methodologies can be employed to tailor the model to
specific domains, including the following:

Continued pre-training: The model undergoes additional pre-training on domain-specific corpora,
allowing its parameters to be adapted incrementally to the target domain’s linguistic features, as
highlighted in research by Gururangan et al. 2020.

Intermediate task training: Here, the model is trained on intermediate tasks, utilizing domain-
specific data before being fine-tuned for downstream applications. This step facilitates a more robust
adaptation to the domain (Pruksachatkun et al., 2020).

Data augmentation: Techniques such as back translation (Xie et al., 2019) and token

replacement (Anaby-Tavor et al., 2020) are leveraged to generate synthetic domain-specific training
examples from limited actual data:

Back translation entails translating an existing text from one language (for example,
English) into another (for example, French) and then translating it back to the original
language. This process generates paraphrased versions of the original text while preserving
its semantics.



Token replacement involves altering individual words within a sentence to generate new
sentences. This alteration usually aims to preserve the semantic meaning of the original
sentence while introducing variations.

Multi-task learning: This framework concurrently optimizes the model for both generic and domain-
specific tasks during the adaptation phase, as demonstrated by Clark et al. 2019.

As domain adaptation techniques evolve, they increasingly enhance model
performance in specialized fields, even with reduced amounts of domain-
specific data. As discussed in Chapter 4, more recent developments have
focused on the computational efficiency of these techniques. Adaptation
methods such as LoRA facilitate significant model adjustments with minimal
parameter changes without requiring comprehensive retraining. It is important
to note that a model's performance will always vary based on various factors
like the quality of the dataset, available computational resources, and other
implementation details.

Now that we have some insight into domain adaptation techniques and their
focus on computational efficiency, we can apply these concepts practically. Our
practice project will leverage BLOOM, a state-of-the-art, open source LLM, to
demonstrate domain adaptation for the finance sector. Leveraging PEFT, we
aim to fine-tune BLOOM with minimal computational resources, illustrating the
practical application of these advanced adaptation methods in enhancing model
performance within the finance domain.

Practice project: Transfer learning for the finance

domain

This project aims to fine-tune BLOOM on a curated corpus of specific
documents to imbue it with the ability to interpret and articulate concepts
specific to Proxima and its products.

Our methodology is inspired by strategies for domain adaptation across various
fields, including biomedicine, finance, and law. A noteworthy study conducted
by Cheng et al. in 2023 called Adapting Large Language Models via Reading

Comprehension presents a novel approach for enhancing LLMs’ proficiency in
domain-specific tasks. This approach repurposed extensive pre-training corpora
into formats conducive to reading comprehension tasks, significantly improving
the models’ functionality in specialized domains. In our case, we will apply a



similar but simplified approach to continued pre-training by fine-tuning the pre-
trained BLOOM model using a bespoke dataset specific to Proxima, effectively
continuing the model’s training. This process adjusts the model parameters
incrementally to ensure that it understands the language unique to Proxima’s
products and offerings better.

Training methodologies for financial domain

adaptation

Four our continued training strategy, we’ll employ causal language modeling

(CLM). This approach is part of a broader set of training methodologies that
optimize model performance for various objectives. Before moving to
implementation, let's try to disambiguate our chosen approach from other
popular strategies to better understand the CLM methodology:

Masked Language Modeling(MLM): A cornerstone of Transformer-based models such as BERT,
MLM randomly masks parts of the input text and challenges the model to predict the masked tokens.
By considering the entire context around the mask (both before and after), MLM enables a model to
develop a bidirectional understanding of language, enriching its grasp of context and semantics.

Next-Sentence Prediction(NSP): This methodology further broadens a model’s narrative
understanding by training it to discern whether two sentences logically follow each other. NSP is
instrumental in teaching models about text structure and coherence, enabling them to construct and
comprehend logical sequences within larger bodies of text.

CLM: Our chosen path for BLOOM’s adaptation diverges here, embracing CLM for its focused,
sequential prediction capabilities. Unlike MLM, which looks both ways (before and after the masked
token), CLM adopts a unidirectional approach, predicting each subsequent token based solely on the
preceding context. This method is intrinsically aligned with natural language generation, making it
especially suitable for crafting coherent, contextually rich narratives in the target domain.

In selecting CLM for BLOOM’s adaptation, we’ll extend the model’s generative
capabilities to produce text sequences that are not only logically structured but
also deeply embedded with the nuance of the target domain. CLM’s
unidirectional nature ensures that each token that’s generated is informed by a
cohesive understanding of the preceding text, enabling the model to generate
detailed, accurate, and domain-specific texts.

Once fine-tuning is complete, we can evaluate the efficacy of the domain-
adapted BLOOM model based on its proficiency in generating contextually
relevant and domain-specific narratives. We’ll compare the adapted model’s



performance against the original model with a special focus on the model’s
fluency, accuracy, and overall comprehension of the target domain.

As we’ve done previously, we’ll leverage Google Colab for our initial
prototyping phase. As Chapters 4 and 5 described, Google Colab offers a
preconfigured environment that simplifies the process of testing our
methodologies before we consider promoting them to production environments.
All the code in this chapter is available in the Chapter 6 folder of this book’s
GitHub repository (https://github.com/PacktPublishing/Generative-AI-
Foundations-in-Python).

We’ll begin with the initial setup, which involves loading a smaller variation of
BLOOM-1b1 using the Transformers library. We’ll also import the methods
that we’ll need to apply PEFT. For this example, we’ll rely on a few libraries
that can be installed as follows:
 

pip install sentence-transformers transformers peft datasets

Once installed, we can begin importing:
 

from transformers import ( 

    AutoTokenizer, AutoModelForCausalLM) 

from peft import AdaLoraConfig, get_peft_model

The next step is to load the tokenizer and model:
 

tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b1") 

model = AutoModelForCausalLM.from_pretrained( 

    "bigscience/bloom-1b1")

As discussed previously, we’re incorporating PEFT for efficient adaptation:
 

adapter_config = AdaLoraConfig(target_r=16) 

model.add_adapter(adapter_config)

The PEFT technique, specifically through AdaLoraConfig, allows us to introduce a
compact, efficient layer so that we can adapt the model to new contexts – here,
the finance domain – with a significantly reduced number of trainable
parameters:

 

model = get_peft_model(model, adapter_config) 

model.print_trainable_parameters()

We must integrate the adapter to finalize the PEFT model setup, effectively
creating a model variant that’s optimized for our domain-specific training while

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python


focusing on efficiency. We can quantify this by examining the number of
trainable parameters our model will use:

 

trainable params: 1,769,760 || all params: 1,067,084,088 || trainable%: 

0.1658500974667331

The preceding code provides us with the following information:

Trainable parameters: 1,769,760

Total parameters in the model: 1,067,084,088

Percentage of trainable parameters: 0.166%

This means that out of over 1 billion parameters in the BLOOM-1b1 model, only
about 1.77 million parameters are being fine-tuned for the finance domain
adaptation. This small percentage (0.166%) of trainable parameters highlights
the efficiency of PEFT, allowing significant model adaptability with minimal
adjustments. This is crucial for practical applications as it reduces both
computational costs and the time required for training.

Next, we’ll move on to preparing the data. We’ll assume we have assembled
texts encompassing the breadth of knowledge about specialized Proxima
products and offerings such as the Proxima Passkey. CLM training requires
distinct testing and training phases to evaluate the model’s ability to accurately
predict the next token in a sequence. This ensures it generalizes well beyond
the training data to unseen text. During training, the loss calculation measures
the difference between the model’s predicted token probabilities and the actual
tokens. It guides the model to adjust its parameters to minimize this loss,
improving its predictive accuracy over iterations. As such, we must define
training and testing texts as our dataset. An example dataset is included in this
book’s GitHub repository (linked earlier in the chapter).

 

dataset = load_dataset("text", 

    data_files={"train": "./train.txt", 

        "test": "./test.txt"} 

    )

Next, we must apply preprocessing and tokenization. Texts are cleaned,
standardized, and then converted into a numerical format (tokens) that the
model can process. We must also truncate or pad texts to fit the model’s input
size constraints and prepare labels for CLM training, where the model learns to
predict each subsequent token. Truncation and padding are preprocessing
steps that are used to standardize the length of input texts for machine



learning models, particularly those with fixed input size constraints like many
language models. Truncation removes parts of the text to shorten inputs that
exceed the model’s maximum length, ensuring they fit within the specified size
limit. Padding adds filler values (often zeros) to shorter inputs to extend them
to the required length, allowing for consistent input dimensions across the
dataset. Consistent input dimensions are necessary to ensure uniformity in
matrix operations and computations across the entire dataset since LLMs, like
other models that rely on deep learning, process inputs through layers of
functions that require fixed-size vectors or matrices. In this case, we’ll set the
sequence length to a maximum of 512 tokens so that it aligns with the model’s
architecture:

 

def preprocess_function(examples): 

    inputs = tokenizer(examples["text"], truncation=True, 

        padding="max_length", max_length=512) 

    inputs["labels"] = inputs["input_ids"].copy() 

    return inputs

The TrainingArguments class configures the training process, setting parameters
such as the batch size, number of epochs, and the directory for saving model
checkpoints. This configuration is crucial for efficient learning and model
evaluation. Meanwhile, the Trainer class orchestrates the model’s training
process. Again, continued training gradually adapts the model’s parameters to
generate and understand text related to the Proxima Passkey:

 

from transformers import Trainer, TrainingArguments 

training_args = TrainingArguments( 

    output_dir="./model_output", 

    per_device_train_batch_size=2, 

    num_train_epochs=5, 

    logging_dir='./logs', 

    logging_steps=10, 

    load_best_model_at_end=True, 

    prediction_loss_only=True, 

) 

trainer = Trainer( 

    model=model, 

    args=training_args, 

    train_dataset=tokenized_datasets["train"], 

    eval_dataset=tokenized_datasets["test"], 

) 

trainer.train() 

model.save_pretrained("./proxima_da_model")

Generally, our configuration specifies the training parameters and initializes
the Trainer class while focusing on domain adaptation. The TrainingArguments class
is tailored to manage the training process efficiently, including logging and



model-saving strategies. Remember that the batch size we choose for training
the model balances the GPU’s memory capacity and how quickly the model
learns from the dataset. A larger batch size allows more data to be processed at
once, speeding up training but requiring more memory, which can be a
limitation if the GPU has restricted capacity. Conversely, a smaller batch size
means the model updates its weights more frequently with fewer samples,
which can benefit learning but results in slower overall progress through the
dataset.

With training complete, we can use the adapted model to generate text based
on prompts related to the Proxima Passkey. The model considers the prompt,
generates a sequence of tokens representing the continuation, and then
decodes this sequence back into human-readable text:

 

def predict(model, prompt="The Proxima Passkey is"): 

    inputs = tokenizer(prompt, return_tensors="pt") 

    output = model.generate(**inputs, max_length=50) 

    return tokenizer.decode(output[0], skip_special_tokens=True)

Notice the model.generate() function, which takes tokenized input and produces a
sequence of tokens as output. These tokens are then decoded into text.

In this example, we adapted the BLOOM language model so that it specializes
in the finance domain. This involved loading the pre-trained model, applying a
PEFT adapter for efficient domain adaptation, and preparing a financial dataset
for model training through standardization and tokenization. After fine-tuning
BLOOM with this domain-specific data, we used the model to generate text
relevant to the finance sector. The final step is to evaluate this adapted model’s
performance compared to the original pre-trained version, focusing on its
effectiveness in accurately handling financial language and concepts.

Evaluation and outcome analysis – the ROUGE

metric

Quantitative and qualitative evaluations are essential to assess the adapted
BLOOM model against the original, especially in the context of Proxima’s
language. Quantitatively, the model’s output is compared against a reference
dataset that mirrors Proxima’s product language using the ROUGE metric. This
comparison helps measure the overlap in key terms and styles. Additionally, it’s



beneficial to develop specific metrics for evaluating the model’s proficiency in
terms of financial terminology and concepts relevant to Proxima:

 

from rouge import Rouge 

# Example reference text (what we expect the model to generate after training on a 

complete dataset) 

reference = "Proxima's Passkey enables seamless integration of diverse financial 

portfolios, offering unparalleled access to global investment opportunities and 

streamlined asset management." 

# Example predicted model output 

predicted = "The Proxima Passkey provides a unified platform for managing various 

investment portfolios, granting access to worldwide investment options and efficient 

asset control." 

# Initialize the Rouge metric 

rouge = Rouge() 

# Compute the Rouge scores 

scores = rouge.get_scores(predicted, reference) 

print(scores)

The ROUGE score would be calculated by comparing the two texts in this
example. The score measures the overlap between the predicted output and the
reference text in terms of n-grams (sequences of words). For instance,
ROUGE-N (where N can be 1, 2, or L) calculates the overlap of n-grams
between the predicted and reference texts:

ROUGE-1 evaluates the overlap of unigrams (individual words) between the predicted and reference
texts

ROUGE-2 assesses the overlap of bigrams (two-word phrases) between the texts

ROUGE-L focuses on the longest common subsequence, which is useful for evaluating sentence-level
structure similarity

The ROUGE scores range from 0 to 1 and quantify the similarity between the
predicted text and a reference text, providing insights into how well a model’s
output matches the expected content. Scores closer to 1 indicate higher
similarity or overlap, while scores near 0 suggest little to no commonality.
These scores are divided into three key components – precision, recall, and the
F1 score:

Precision measures the proportion of words in the predicted text that are also found in the reference
text. A high precision score indicates that most of the words generated by the model are relevant and
appear in the reference, signifying accuracy in the model’s output.

Recall assesses the proportion of words from the reference text that are captured in the model’s
prediction. High recall implies that the model effectively includes most of the relevant content from
the reference in its output, indicating comprehensiveness.

The F1 score is the harmonic mean of precision and recall, balancing the two. It is especially useful
for understanding the model’s overall accuracy in generating text that is both relevant (precision) and



comprehensive (recall). The F1 score is crucial when equal importance is given to precision and recall
in evaluating the model’s performance.

Here’s the output:

Metric Recall (r) Precision (p) F1 Score (f)

ROUGE-1 0.35 0.333 0.341

ROUGE-2 0.053 0.048 0.05

ROUGE-L 0.35 0.333 0.341

Table 6.1: ROUGE metric outcomes

These scores indicate a moderate level of unigram overlap (ROUGE-1) between
the texts but a significantly lower bigram overlap (ROUGE-2). The similarity
between the ROUGE-1 and ROUGE-L scores suggests the model captures
individual key terms to some extent but may struggle with longer phrase
structures, pointing to areas for model improvement.

Overall, while the model demonstrates a basic grasp of key individual terms (as
shown by ROUGE-1 and ROUGE-L), its ability to replicate more complex
structures or phrases from the reference text (as indicated by ROUGE-2) is
quite limited. This suggests that while the model has some understanding of
the domain-specific language, further fine-tuning is required for it to effectively
replicate the more nuanced and structured aspects of the reference texts. Keep
in mind that, as we have seen in other chapters, semantic similarity is also a
good measure of domain-specific language understanding and does not rely on
lexical overlap the way ROUGE does.

Qualitatively, domain experts should review the model’s outputs to judge their
relevance and accuracy in the context of Proxima’s products and institutional
language. These experts can provide insights into the nuances of the model’s
performance, which might not be captured by quantitative metrics alone.
Comparing their feedback on the outputs from both the original and adapted
models will highlight how well the adaptation has aligned BLOOM with
Proxima’s specific communication needs. This dual approach ensures a
comprehensive evaluation, blending statistical analysis with real-world
applicability and relevance.



Summary

In this chapter, we explored the domain adaptation process for the BLOOM
LLM, which is specifically tailored to enhance its proficiency in the financial
sector, particularly in understanding and generating content related to
Proxima’s product offerings. We began by introducing the concept of domain
adaptation within the broader scope of transfer learning, emphasizing its
significance in fine-tuning general-purpose models to grasp the intricacies of
specialized fields.

The adaptation process involved integrating PEFT techniques into BLOOM and
preprocessing a financial dataset for model training. This included
standardizing text lengths through truncation and padding and tokenizing the
texts for consistency in model input. The adapted model’s performance was
then quantitatively assessed against a reference dataset using the ROUGE
metric, providing insights into its ability to capture key financial terminologies
and phrases. Qualitative evaluation by domain experts was also suggested as a
complementary method to gauge the model’s practical effectiveness in real-
world scenarios.

Overall, this chapter detailed a common approach to refining an LLM for a
specific domain, illustrating both the methodology and the importance of a
nuanced evaluation to ascertain the success of such adaptations. In the next
chapter, we will explore how to adapt an LLM without fine-tuning using prompt
engineering. We will discover how to contextualize and guide model outputs to
produce similar results comparable to fine-tuned models.
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7

Mastering the Fundamentals of Prompt

Engineering

In Chapter 5, we briefly evaluated a fine-tuned Large Language Model (LLM)
against a general-purpose model using in-context learning or the few-shot
prompting approach. In this chapter, we will revisit and explore prompting
techniques to examine how well we can adapt a general-purpose LLM without
fine-tuning. We explore various prompting strategies that leverage the model’s
inherent capabilities to produce targeted and contextually relevant outputs. We
will start by examining the shift toward prompt-based language models. Then,
we will revisit zero- and few-shot methods, explain prompt-chaining, and
discuss various strategies, including more advanced techniques such as
Retrieval Augmented Generation (RAG). At the end of the chapter, we will
apply what we have learned and design a prompting strategy with the aim of
consistently eliciting factual, accurate, and consistent responses that
accomplish a specific business task.

Before diving into specific prompt engineering techniques, we will review a few
breakthroughs that pioneered State-of-the-Art (SOTA) prompt-based models.
Research from early 2018 demonstrated how pretraining LLMs could enable
few-shot generalization – accurate performance on new tasks given only a
prompt statement and a few demonstrations. Follow-up work further tailored
model architectures and training specifically for excelling at prompt-based
inference across many text-specific tasks. More recent methods optimized
model efficiency and stability, enabling accurate and reliable and efficient
prompt completion. These innovations laid the groundwork for prompt
engineering, demonstrating the remarkable versatility of prompt-based models
with minimal input data. Now, prompt design is becoming its own subfield of
research – unlocking SOTA performance for an ever-expanding range of tasks.
Let’s get started.

The shift to prompt-based approaches



As discussed in prior chapters, the development of the original GPT marked a
significant advance in natural language generation, introducing the use of
prompts to instruct the model. This method allowed models such as GPT to
perform tasks such as translations – converting text such as “Hello, how are

you?” to “Bonjour, comment ça va?” – without task-specific training, leveraging
deeply contextualized semantic patterns learned during pretraining. This
concept of interacting with language models via natural language prompts was
significantly expanded with OpenAI’s GPT-3 in 2020. Unlike its predecessors,
GPT-3 showcased remarkable capabilities in understanding and responding to
prompts in zero- and few-shot learning scenarios, a stark contrast to earlier
models that weren’t as adept at such direct interactions. The methodologies,
including the specific training strategies and datasets used for achieving GPT-
3’s advanced performance, remain largely undisclosed. Nonetheless, it is
inferred from OpenAI’s public research that the model learned to follow
instructions based on its vast training corpus, and not explicit instruction-
tuning. GPT-3’s success in performing tasks based on simple and direct
prompting highlighted the potential for language models to understand and
execute a wide range of tasks without requiring explicit task-specific training
data for each new task. This led to a new paradigm in NLP research and
applications, focusing on how effectively a model could be prompted with
instructions to perform tasks such as summarization, translation, content
generation, and more.

After the release of GPT-3, OpenAI was among the first to introduce specialized
fine-tuning to respond more accurately to instructions in their release of
InstructGPT (Ouyang et al., 2022). The researchers aimed to teach the model to
closely follow instructions using two novel approaches. The first was
Supervised Fine-Tuning  (SFT), which involved fine-tuning using datasets
carefully crafted from prompts and response pairs. These demonstration

datasets were then used to perform SFT on top of the GPT-3 pretrained model,
refining it to provide responses more closely aligned with human responses.
Figure 7.1 provides an example of a prompt and response pair.



Figure 7.1: InstructGPT SFT instruction and output pairs

The second approach involved additional refinement using Reinforcement

Learning from Human Feedback (RLHF). Reinforcement Learning (RL),
established decades ago, aims to enhance autonomous agents’ decision-making
capabilities. It does this by teaching them to optimize their actions based on the
trade-off between risk and reward. The policy captures the guidelines for the
agent’s behavior, dynamically updating as new insights and feedback are
learned to refine decisions further. RL is the exact technology used in many
robotic applications and is most famously applied to autonomous driving.

RLHF is a variation of traditional RL, incorporating human feedback alongside
the usual risk/reward signals to direct LLM behavior toward better alignment
with human judgment. In practice, human labelers would provide preference
ratings on model outputs from various prompts, and these ratings would be
used to update the model policy, steering the LLM to generate responses that
better conform to expected user intent across a range of tasks. In effect, this
technique helped to reduce the model’s tendency to generate inappropriate,
biased, harmful, or otherwise undesirable content. Although RLHF is not a
perfect solution in this regard, it represents a significant step toward models
that better understand and align with human values.



Later that year, following OpenAI’s introduction of InstructGPT, Google
unveiled Fine-tuned Language Net or FLAN (Wei et al., 2021). FLAN
represented another leap toward prompt-based LLMs, employing explicit
instruction tuning. Google’s approach relied on formatting existing datasets
into instructions, enabling the model to understand various tasks. Specifically,
the authors of FLAN merged multiple NLP datasets across different categories,
such as translation and question answering, creating distinct instruction
templates for each dataset to frame them as instruction-following tasks. For
example, the FLAN team leveraged ANLI challenges (Nie et al., 2020) to
construct question-answer pairs explicitly designed to test the model’s
understanding of complex textual relationships and reasoning. By framing
these challenges as question-answer pairs, the FLAN team could directly
measure a model’s proficiency in deducing these relationships under a unified
instruction-following framework. Through this innovative approach, FLAN
effectively broadened the scope of tasks a model can learn from, enhancing its
overall performance and adaptability across a diverse set of NLU benchmarks.
Figure 7.2 presents a theoretical example of question-answer pairs based on
ANLI.

Figure 7.2: Training templates based on the ANLI dataset



Again, the central idea behind FLAN was that each benchmark dataset (e.g.,
ANLI) could be translated into an intuitive instruction format, yielding a broad
mixture of instructional data and natural language tasks.

These advancements, among others, represent a significant evolution in the
capabilities of LLMs, transitioning from models that required specific training
for each task to those that can intuitively follow instructions and adapt to a
multitude of tasks with a simple prompt. This shift has not only broadened the
scope of tasks these models can perform but also demonstrated the potential
for AI to process and generate human language in complex ways with
unprecedented precision.

With this insight, we can shift our focus to prompt engineering. This discipline
combines technical skill, creativity, and human psychology to maximize how
models comprehend and respond, appropriately and accurately, to instructions.
We will learn prompting techniques that increasingly influence the model’s
behavior toward precision.

Basic prompting – guiding principles, types, and

structures

In Chapter 5, we introduced the concept of zero- and few-shot learning,
providing the model either a direct instruction, or a direct instruction paired
with examples specific to the task. In this section, we will focus on zero-shot
learning, where prompting becomes a critical tool for guiding the model to
perform specific tasks without prior explicit training on those tasks. This
section explores elements of a prompt and how to structure it effectively for
zero-shot learning. However, we will first establish some critical guiding
principles to help us understand expected model behavior.

Guiding principles for model interaction

It is absolutely critical to understand that LLMs, despite their unprecedented
SOTA performance on natural language tasks, have significant inherent
limitations, weaknesses, and susceptibilities. As described in Chapter 1, LLMs
cannot establish rationale or perform logical operations natively. Our
interactions with LLMs are typically supplemented by a highly sophisticated



application layer that enables the raw model to carry on an extended exchange,
integrate with systems that perform computations, and retrieve additional
information and knowledge not intrinsic to the model itself. Independent of
supplemental integrations, many LLMs are prone to erratic behavior. The most
common of these is often referred to as hallucination, where the model
generates a plausible output that is not entirely factual. As such, we should
approach the general use of LLMs with the following guidelines in mind:

Apply domain knowledge and subject-matter expertise: As SOTA LLMs are prone to generating
inaccuracies that sound plausible, in use cases where factuality and precision are essential (e.g., code
generation, technical writing, or academic research), users must have a firm grasp of the subject
matter to detect potential inaccuracies. For example, suppose a user without medical expertise were
to prompt a model for healthcare advice. In that case, the model may confuse, conflate, or simply
invent information that could result in misleading or potentially dangerous advice. A mitigant for this
behavior could be to provide the model with information from a reputable health journal and instruct
it to generate its answers explicitly from the passages provided. This technique is often called
grounding, and we will cover it in depth later. However, even when supplementing the model’s
knowledge with verified information, the model can still misrepresent facts. Without expertise in the
specific domain in question, we may never detect misinformation. Consequently, we should generally
avoid using LLMs when we cannot verify the model output. Moreover, we should avoid using LLMs in
high-stake scenarios where erroneous output could have profound implications.

Acknowledge bias, underrepresentation, and toxicity: We have described how LLMs are trained
at an enormous scale and often on uncurated datasets. Inevitably, LLMs will learn, exhibit, and
amplify societal biases. The model will propagate stereotypes, reflect biased assumptions, and
generate toxic and harmful content. Moreover, LLMs can overrepresent certain populations and
grossly underrepresent others, leading to a skewed or warped sociological perspective. These notions
of bias can manifest in many ways. We will explore this topic, and other ethical implications of LLM
use, in detail in Chapter 8.

Avoid ambiguity and lack of clarity: Since LLMs were trained to synthesize information resembling
human responses, they can often exhibit notions of creativity. In practice, if prompting is ambiguous
or lacks clarity, the model will likely use its vast contextualized knowledge to “assume” or “infer” the
meaning or objective of a given prompt or instruction. It may apply some context from its training
instead of responding with a clarifying question. As we will describe in the next section, it is crucial to
provide clarity by contextualizing input in most cases.

Now that we have established a few overarching principles to help navigate
interactions and keep us within the boundaries of appropriate use, we can
deconstruct the various elements of a prompt.

Prompt elements and structure

Generally, a prompt acts as a guide, directing the model’s response toward the
desired outcome. It typically comprises key elements that frame the task at



hand, providing clarity and direction for the model’s generative capabilities.
The following table presents the essential elements of a zero-shot prompt.

Instruction A clear, concise statement describing what you want the model
to do. This could be a direct command, a question, or a
statement that implies a task.

Context Relevant information or background is needed to understand
the instruction or the task. This could include definitions or
clarifications.

Input Following the instructions, the model should work with specific
data or content. This could be a piece of text, a question, or any
information relevant to the task.

Output cue An indication of how the model’s response is to be structured.
This can be part of the instruction or implied through the
prompt’s formatting.

Table 7.1: Basic elements of a zero-shot prompt

We can then structure these elements to maximize the zero-shot approach,
whereby the model relies entirely on the prompt to understand and execute a
task. In this context, we use the term task to describe a specific natural
language task, such as summarization or translation. However, we will also
encounter the term task applied more broadly to refer to the output the model
should provide. Let’s explore a few concrete examples of various tasks. In this
case, we will be referring to specific NLP tasks and applying a standard
structure combining the key elements we’ve described:

Example 1: Summarization task

Instruction: Summarize the following text in one sentence.

Context: The text provides an overview of the benefits of renewable energy.

Input: Renewable energy sources like solar and wind power offer sustainable
alternatives to fossil fuels, reducing greenhouse gas emissions and promoting

environmental conservation...

Output Cue: Renewable energy sources, such as



Example Outcome: "Renewable energy sources, such as solar and wind, play a
crucial role in reducing emissions and conserving the environment."

Example 2: Translation task

Instruction: Translate the following sentence from English to Spanish.

Context: The sentence is a greeting.

Input: "Hello, how are you?"

Output Cue: This translates to

Example Outcome: This translates to "Hola, ¿cómo estás?"

The structured templates help us to efficiently and reliably prompt the
model for a wide range of inputs, while maintaining a structure that the
model has learned to recognize and respond to. In fact, we can take this a
step further by asking the model to provide a specific format in its output.
Using the output cue, we can instruct the model to provide a specified
format such as Markdown.

Example 3: Code generation task

Instruction: Generate a Python function that calculates the square of a
number.

Context: The function should take a single integer argument and return its
square.

Input: "Please write a Python function to calculate the square of a number."

Output Cue: By using the Markdown format in the output cue, the model
knows to provide this format and returns the following:

 

def square(number):

 

    return number ** 2

Using LangChain to produce JSON-formatted output, we can leverage the
same approach. Specifically, LangChain’s PromptTemplate provides a flexible
way to dynamically define a structure for our prompts and insert elements:

 

from langchain.prompts import PromptTemplate

 

from langchain.llms import OpenAI

 

# Define a prompt template requesting JSON formatted output



 

prompt_structure = PromptTemplate(

 

    template="""

 

        Context: {context}

 

        Instruction: {instruction}

 

        Text: {text_to_process}

 

        Output Cue: Format the response in JSON with one element called summary.

 

    """,

 

    input_variables=["context," "instruction",

 

        "text_to_process"]

 

)

 

# Dynamic elements for the prompt

 

context = "Summarizing long text passages."

 

instruction = "Summarize the key points from the following text in JSON format."

 

text_to_process = """

 

Mars is the fourth planet from the Sun. The surface of Mars is orange-red because…

 

"""

 

formatted_prompt = prompt_structure.format_prompt(

 

    context=context,

 

    instruction=instruction,

 

    text_to_process=text_to_process

 

)

 

llm = OpenAI(model_name='gpt-3.5-turbo-instruct',

 

    temperature=0.9, max_tokens = 256)

 

response = llm.invoke(formatted_prompt)

 

print(response)

This produces the following:
 

{



 

    "summary": "Mars is the fourth planet from the Sun, known for its orange-red 

surface and high-contrast features that make it a popular object for telescope 

viewing."

 

}

Crafting effective prompts for zero-shot learning with LLMs requires a clear
understanding of the task, thoughtful structuring of the prompt, and
consideration of how the model interprets and responds to different elements
within the prompt. By applying these principles, we can guide models to
perform various tasks accurately and effectively. Subsequently, we will explore
methods to guide models’ behavior through positive affirmations, emotional
engagement, and other cognitive-behavioral techniques.

Elevating prompts – iteration and influencing

model behaviors

In this section, we will introduce techniques for enhancing AI model
interactions inspired by cognitive-behavioral research. Behavioral prompting
can guide models toward more accurate and nuanced responses. For example,
LLM performance can be improved by providing the model with positive
emotional stimuli, asking the model to assume a persona or character, or using
situational prompting (i.e., role-play). However, it is crucial to recognize that
these techniques can also be misused or used to inadvertently introduce
stereotypes, as they rely on assumptions and generalizations that may not
accurately reflect individual experiences or diverse perspectives. Without
careful consideration and monitoring, there is a risk of reinforcing existing
biases or creating new ones, potentially leading to skewed or harmful output.
Given these challenges, we will explore a responsible approach to employing
cognitive-behavioral techniques in AI interactions, aiming to harness their
benefits while minimizing risks and ensuring inclusivity and fairness.

LLMs respond to emotional cues

Research conducted by Microsoft in collaboration with various institutions,
including the Beijing Normal University psychology department, suggests that
LLMs can mimic and display some aspects of human emotional intelligence.
This can lead to improved task performance when prompts are infused with



emotional stimuli. In particular, the researchers hypothesize that emphasizing
positive words can trigger more constructive and effective responses. The
phenomenon is not well understood, but the effect is that positive emotional
cues seem to improve model performance on various tasks consistently (Li et
al., 2023). For example, the researchers input phrases encouraging confidence
and positive outcomes, such as This is very important to my career or Believe in your
abilities and strive for excellence. Your hard work will yield remarkable results. These
types of psychological elements not only positively influenced the output quality
but also made interactions more effective and nuanced.

Effect of personas

Research has shown that the effect of personas enables LLMs to better
simulate human-like interactions by adopting varied characteristics,
perspectives, and response styles tailored to specific user profiles. This
approach enhances the model’s capability for engaging in more personalized,
contextually relevant conversations. Incorporating personas into LLM prompts
effectively shifts the distribution of possible outputs, directing the model’s
generation process toward responses that resonate with specific character
traits or perspectives. Thanks to the model’s extensive training on diverse
datasets, it can replicate patterns aligning with the described characteristics of
personas, focusing its attention and selection process on a more defined set of
outputs. This enhances relevance and specificity.

For clarity, let’s reconsider our hypothetical business StyleSprint, a fashion
brand. If we prompt an LLM with “As a creative and bold fashion brand, how would
StyleSprint describe its upcoming summer collection?”, the model, adopting the
brand’s persona, might generate a response such as the following:

“This summer, StyleSprint dares you to stand out! Our collection is a vibrant explosion of
colors and patterns, designed for the fearless fashionista. Think bold prints, daring

cuts, and a statement that screams confidence. From sun-drenched beaches to chic city

streets, our pieces promise to make every moment unforgettable. Embrace your boldness with

StyleSprint this summer.”.

In this example, we can see how personas guide the model’s outputs to reflect
specific brand tones, such as creativity and boldness in this case, making the
marketing material more engaging and aligned with the brand’s identity.



Furthermore, using a few-shot approach, we could imbue model responses with
a very specific branded tone. We will discuss few-shot in the sections that
follow.

However, as discussed, personas should be used with caution. Personas can
perpetuate stereotypes and biases, particularly against marginalized groups. A
study conducted by researchers at Stanford University found that generating
personas based on intersectional demographic groups often yields higher rates
of racial stereotypes and patterns of othering, or portraying someone or a
group as fundamentally different or alien, compared to human-written texts. In
some cases, model outputs could amplify narratives and tropes (Cheng,
Durmus, & Jurafsky, 2023).

Situational prompting or role-play

Role-play in LLMs, in the same way as personas, involves adopting specific
identities or characteristics. However, the two serve different purposes and are
applied in distinct contexts. Personas are predefined sets of traits or
characteristics that an LLM mimics to tailor its responses, focusing on
consistency with those traits. As we have demonstrated with our StyleSprint
example, this is useful for creating content with a specific tone or perspective.

Conversely, role-play extends beyond adopting a set of traits to engage in a
scenario or narrative dynamically. It involves the LLM taking on a character
within a simulated environment or story, responding to inputs in a manner that
aligns with both a persona and the evolving context of the role-play scenario.
This can be especially useful in complex simulations where the LLM must
navigate and contribute to ongoing narratives or dialogues that require
understanding and adapting to new information or changing circumstances in
real time.



Figure 7.3: Persona versus role-play

Revisiting our real-world scenario, role-play could be particularly useful for
creating interactive and engaging customer service experiences. For example,
StyleSprint could design a role-play scenario where the LLM acts as a virtual
personal stylist. In this role, the model would engage customers with prompts
such as I'm your personal stylist for today! What's the occasion you're dressing for?.
Based on the customer’s response, the LLM could ask follow-up questions to
narrow down preferences, such as Do you prefer bold colors or pastel shades?.
Finally, it could recommend outfits from StyleSprint’s collection that match the
customer’s needs, saying something such as For a summer wedding, I recommend our
Floral Maxi Dress paired with the Vintage Sun Hat. It's elegant, yet perfect for an

outdoor setting!.

In this case, we leverage the LLM’s ability to dynamically adapt its dialogue
based on customer inputs to create an advanced recommender system that
facilitates a highly personalized shopping experience. It not only helps in
providing tailored fashion advice but also engages customers in a novel way.

Having examined how behavior-inspired techniques, such as personas and role-
play, influence model behavior through zero-shot learning, let’s now turn our
attention to few-shot learning. This is also known as in-context learning, which
we described in Chapter 5. Recall that the few-shot approach can enhance the
consistency, stability, and reliability of model responses. By providing the
model with a few examples of the desired output within the prompt itself, few-
shot learning effectively teaches the model the specific task at hand, leading to
more predictable and accurate outputs.

Advanced prompting in action – few-shot learning

and prompt chaining



In few-shot settings, the LLM is presented with a small number of examples of
a task within the input prompt, guiding the model to generate responses that
align with these examples. As discussed in the prior chapter, this method
significantly reduces the need for fine-tuning on large, task-specific datasets.
Instead, it leverages the model’s pre-existing knowledge and ability to infer
context from the examples provided. In Chapter 5, we saw how this approach
was particularly useful for StyleSprint by enabling the model to answer specific
questions after being provided with just a few examples, enhancing consistency
and creativity in brand messaging.

This method typically involves using between 10 and 100 examples, depending
on the model’s context window. Recall that the context window is the limit of
tokens a language model can process in one turn. The primary benefit of the
few-shot approach is that it minimizes the risk of the model learning a too-
narrow distribution from a specific dataset through fine-tuning. Although the
performance of few-shot may not always match its fine-tuned counterpart, few-
shot learning often outperforms both one-shot and zero-shot learning, showing
significant improvements in task adaptation and accuracy. This is especially
true as more examples are added to the context window (Brown et al., 2020).

Applications such as LangChain provide a simple and convenient pattern for
few-shot implementation. Consider a scenario in which StyleSprint would like
to generate taglines for its seasonal collections. In this case, we can provide the
model with examples written by the content team to guide the model toward
consistency with the brand tone:

 

examples = [ 

    { 

        "prompt": "Describe the new summer collection in a bold and adventurous tone.", 

        "response": "Dive into summer with StyleSprint's latest collection! Featuring 

daring designs and vibrant colors, it's all about making bold statements. Perfect for 

the fearless fashionista ready to conquer the heat." 

    }, 

    { 

        "prompt": "How would you introduce our eco-friendly line to environmentally 

conscious customers?", 

        "response": "Embrace sustainable style with StyleSprint's eco-friendly line. 

Crafted from recycled materials, each piece combines fashion with responsibility, 

designed for the eco-conscious and trendy." 

    } 

]

The LangChain API offers FewShotPromptTemplate to format the examples
consistently:



 

from langchain.prompts.few_shot import FewShotPromptTemplate 

from langchain.prompts.prompt import PromptTemplate 

# Create a formatter 

prompt_format = PromptTemplate( 

    input_variables=["prompt", "response"], 

    template="Prompt: {prompt}\nResponse: {response}") 

# Create the FewShotPromptTemplate 

few_shot_prompt = FewShotPromptTemplate( 

    examples=examples, example_prompt=prompt_format, 

    suffix="Prompt: {input}", input_variables=["input"])

We can now apply the template to an LLM to generate a response that we can
expect will closely align with the tone and style of our examples:

 

from langchain import LLMChain, OpenAI 

# Setup the LLM and LLMChain 

llm = OpenAI(temperature=0) 

llm_chain = LLMChain(llm=llm, prompt=few_shot_prompt) 

# Define the input prompt 

input_prompt = "Create a catchy tagline for our winter collection." 

# Invoke the chain to generate output 

response = llm_chain.run(input_prompt) 

# Extract and print the generated slogan 

generated_slogan = response 

print(generated_slogan)  

    # => Response: "Stay warm, 

    stay stylish, 

    stay ahead with StyleSprint's winter collection!"

Now that we have a consistent and programmatic method for providing the
model with examples, we can iterate over the model responses using prompt
chaining. A prompt chain generally refers to chaining together multiple
prompts and LLM interactions to have a conversation with the model and
iteratively build on the results. Remember, the model itself cannot store
information and effectively has no memory or prior inputs and outputs. Instead,
the application layer stores prior inputs and outputs, which are then provided
to the model with each exchange. For example, you might start with an initial
prompt such as the following:

 

"Write a slogan for a winter clothing line"

The LLM might generate the following:
 

"Be warm, be cozy, be you"

You could then construct a follow-up prompt using the following:
 

"Modify the slogan to be more specific about the quality of the clothing"

You could then keep iterating to improve the output.



Chaining facilitates guiding and interactively refining the text generated rather
than relying purely on the given examples. Notice that our prior few-shot code
had already established a chain, which we can now use to iterate as follows:

 

response = llm_chain.run("Rewrite the last tag to something about embracing the 

winter") 

Response #  

=> Response: Embrace the winter wonderland with StyleSprint's latest collection. From 

cozy knits to chic outerwear, our pieces will keep you stylish and warm all season 

long.

The model is now working from both the examples we provided and any
additional instructions we want to include as part of the chain. Prompt
chaining, combined with few-shot learning, provides a powerful framework for
iteratively guiding language model outputs. By leveraging application state to
maintain conversation context, we can steer the model toward desired
responses in line with our provided examples. This approach balances
harnessing the model’s inferential capabilities and retaining control to align its
creative outputs.

Next, we will dive into our practice project, which implements RAG. RAG
augments model responses by retrieving and incorporating external data
sources. This technique mitigates hallucination risks by grounding AI-
generated text in real data. For example, StyleSprint may leverage past
customer survey results or catalog data to enhance product descriptions. By
combining retrieval with prompt chaining, RAG provides a scalable method for
balancing creativity with accuracy.

Practice project: Implementing RAG with

LlamaIndex using Python

For our practice project, we will shift from LangChain to exploring another
library that facilitates the RAG approach. LlamaIndex is an open source library
that is specifically designed for RAG-based applications. LlamaIndex simplifies
ingestion and indexing across various data sources. However, before we dive
into implementation, we will explain the underlying methods and approach
behind RAG.

As discussed, the key premise of RAG is to enhance LLM outputs by supplying
relevant context from external data sources. These sources should provide
specific and verified information to ground model outputs. Moreover, RAG can



optionally leverage the few-shot approach by retrieving few-shot examples at
inference time to guide generation. This approach alleviates the need to store
examples in the prompt chain and only retrieves relevant examples when
needed. In essence, the RAG approach is a culmination of many of the prompt
engineering techniques we have already discussed. It provides structure,
chaining, few-shot learning, and grounding.

At a high level, the RAG pipeline can be described as follows:

1. The RAG component ingests and indexes domain-specific data sources using vector embeddings to
encode semantics. As we learned in Chapter 3, these embeddings are imbued with deeply
contextualized, rich semantic information that the component uses later to perform a semantic search.

2. The component then uses the initial prompt as a search query. The query is input to retrieval systems,
which find the most relevant snippets from the indexed data based on vector similarity. Similar to how
we applied semantic similarity in prior chapters, RAG leverages a similarity metric to rank results by
semantic relevance.

3. Lastly, the original prompt is augmented with information from the retrieved contexts, and the
augmented prompt is passed to the LLM to generate a response grounded in the external data.

RAG introduces two major benefits. First, like the chaining approach, the
indexed external data acts as a form of memory, overcoming the LLM’s
statelessness. Second, this memory can rapidly scale beyond model context
window limitations, since examples are curated and only provided at the time of
the request as needed. Ultimately, RAG unlocks otherwise unattainable
capabilities in reliable and factual text generation.

In our practice project, we revisited the StyleSprint product descriptions. This
time, we want to leverage RAG to retrieve detailed information about the
product to produce very specific descriptions. For the purpose of keeping this
project accessible, we will implement an in-memory vector store (Faiss) instead
of an external database. We begin with installing the necessary libraries. We
will leverage LlamaIndex’s integrated support for Faiss:
 

pip install llama-index faiss-cpu llama-index-vector-stores-faiss

We will then import the necessary libraries, load the data, and create the index.
This vector store will rely on OpenAI’s embeddings, so we must also define
OPENAI_API_KEY using a valid key:

 

assert os.getenv("OPENAI_API_KEY") is not None,  

    "Please set OPENAI_API_KEY" 

# load document vectors 

documents = SimpleDirectoryReader("products/").load_data() 

# load faiss index 



d = 1536 # dimension of the vectors 

faiss_index = faiss.IndexFlatL2(d) 

# create vector store 

vector_store = FaissVectorStore(faiss_index=faiss_index) 

# initialize storage context 

storage_context = StorageContext.from_defaults( 

    vector_store=vector_store) 

# create index 

index = VectorStoreIndex.from_documents( 

    documents,storage_context=storage_context)

We now have a vector store that the model can rely on to retrieve our very
specific product data. This means we can query for very specific responses
augmented by our data:

 

# query the index 

query_engine = index.as_query_engine() 

response = query_engine.query("describe summer dress with price") 

print(response)  

=> A lightweight summer dress with a vibrant floral print is priced at 59.99.

The result is a response that not only provides an accurate description of the
summer dress but also includes specific details, such as the price. This level of
detail enriches the customer’s shopping experience, providing relevant and
real-time information for customers to consider when making a purchase.

The next step is to evaluate our RAG implementation to ensure that the answer
is relevant, faithful to the source text, reflective of contextual accuracy, and not
in any way harmful or inappropriate. We can apply an open source evaluation
framework (RAGAS), which provides implementation of the following metrics:

Faithfulness assesses the degree to which the generated response is faithful or true to the original
context

Answer relevance evaluates how relevant the generated answer is to the given question

Context precision measures the precision of the context used to generate the answer

Context recall measures the recall of the context used to generate the answer

Context relevancy assesses the relevancy of the context used to generate the answer

Harmfulness evaluates whether a submission (or answer) contains anything that could potentially
cause harm to individuals, groups, or society at large

This suite of metrics provides an objective measure of RAG application
performance based on a comparison to ground truth. In our case, we can use
responses generated from our product data, along with context and ground
truth derived from the original dataset, to construct an evaluation dataset and
perform a comprehensive evaluation using the metrics described.



The following is a simplified code snippet implementing the RAGAS evaluation
for our generated product descriptions. A complete working implementation is
available in the Chapter 7 folder of the GitHub companion to this book
(https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python).

 

# Define the evaluation data 

eval_data: Dict[str, Any] = { 

   "question": questions, # list of sampled questions 

   "answer": engine_responses, # responses from RAG application 

   "contexts": contexts, # product metadata 

"ground_truth": ground_truth, # corresponding descriptions written by a human 

} 

# Create a dataset from the evaluation data 

dataset: Dataset = Dataset.from_dict(eval_data) 

# Define the evaluation metrics 

metrics: List[Callable] = [ 

    faithfulness, 

    answer_relevancy, 

    context_precision, 

    context_recall, 

    context_relevancy, 

    harmfulness, 

] 

# Evaluate the model using the defined metrics 

result: Dict[str, float] = evaluate(dataset, metrics=metrics) 

print(result)

Our evaluation program should produce the following:
 

{'faithfulness': 0.9167, 'answer_relevancy': 0.9961, 'context_precision': 0.5000, 

'context_recall': 0.7500, 'harmfulness': 0.0000}

We can observe that the system performs well in generating accurate and
relevant answers, as evidenced by high faithfulness and answer relevancy
scores. While context precision shows room for improvement, half of the
relevant information is correctly identified. Context recall is effective,
retrieving most of the relevant context. The absence of harmful content ensures
safe interactions. Overall, the system displays robust performance in answering
accurately and contextually, but could benefit from refinements in pinpointing
the most pertinent context snippets.

As discussed in Chapters 5 and 6, the evaluation of LLMs often requires the
additional operational burden of collecting ground-truth data. However, doing
so makes it possible to perform a robust evaluation of model and application
performance.

Summary

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python


In this chapter, we explored the intricacies of prompt engineering. We also
explored advanced strategies to elicit precise and consistent responses from
LLMs, offering a versatile alternative to fine-tuning. We traced the evolution of
instruction-based models, highlighting how they’ve shifted the paradigm
toward an intuitive understanding and adaptation to tasks through simple
prompts. We expanded on the adaptability of LLMs with techniques such as
few-shot learning and retrieval augmentation, which allow for dynamic model
guidance across diverse tasks with minimal explicit training. The chapter
further explored the structuring of effective prompts, and the use of personas
and situational prompting to tailor model responses more closely to specific
interaction contexts, enhancing the model’s applicability and interaction
quality. We also addressed the nuanced aspects of prompt engineering,
including the influence of emotional cues on model performance and the
implementation of RLHF to refine model outputs. These discussions
underscored the potential of LLMs to exhibit some level of emotional
intelligence, leading to more effective and nuanced interactions. However,
alongside these technological strides, we stressed the paramount importance of
ethical considerations. We highlighted the need for responsible adoption and
vigilance to mitigate potential harm and biases associated with these
techniques, ensuring fairness, integrity, and the prevention of misuse.

Lastly, we learned how to implement and evaluate the RAG approach to ground
the LLM in contextual information from trusted sources and produce answers
that are relevant and faithful to the source text. In the next chapter, we will
look more closely at the role of individuals in advancing generative AI while
emphasizing the dual responsibility of developers and researchers to navigate
this rapidly evolving field with a conscientious approach, balancing innovation
with ethical imperatives and societal impacts.
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8

Addressing Ethical Considerations and Charting a

Path Toward Trustworthy Generative AI

As generative AI advances, it will extend beyond basic language tasks,
integrating into daily life and impacting almost every sector. The inevitability of
its widespread adoption highlights the need to address its ethical implications.
The promise of this technology to revolutionize industries, enhance creativity,
and solve complex problems must be coupled with the responsibility to navigate
its ethical landscape diligently. This chapter will explore these ethical
considerations, dissect the intricacies of biases entangled in these models, and
look at strategies for cultivating trust in general-purpose AI systems. Through
thorough examination and reflection, we can begin to outline a path toward
responsible use, helping to ensure that advancements in generative AI are
leveraged for the greater good while minimizing harm.

To ground our discussion, we will first identify some ethical norms and
universal values relevant to generative AI. While this chapter cannot be
exhaustive, it aims to introduce key ethical considerations.

Ethical norms and values in the context of

generative AI

The ethical norms and values guiding the development and deployment of
generative AI are rooted in transparency, equity, accountability, privacy,
consent, security, and inclusivity. These principles can serve as a foundation for
developing and adopting systems aligned with societal values and supporting
the greater good. Let’s explore these in detail:

Transparency involves clearly explaining the methodologies, data sources, and processes behind
large language model (LLM) construction. This practice builds trust by enabling stakeholders to
understand the technology’s reliability and limits. For example, a company could publish a detailed
report on the types of data trained on their LLM and the steps taken to ensure data privacy and bias
mitigation.

Equity in the context of LLMs ensures fair treatment and outcomes for all users by actively
preventing biases in models. This requires thorough analysis and correction of training data and
continuous monitoring of exchanges to reduce discrimination. One measure a firm might apply is a



routine review of LLM performance across various demographic groups to identify and address
unintended biases.

Accountability establishes that developers and users of LLMs are responsible for model outputs and
impacts. It includes transparent and accessible mechanisms for reporting and addressing negative
consequences or ethical violations. In practice, this could manifest as the establishment of an
independent review board that oversees AI projects and intervenes in cases of ethical misconduct.

Privacy and consent, in principle, involves ensuring that individual privacy and consent are
respected and preserved during the use of personal data as input to LLMs. In practice, developers
should avoid using personal data for training without explicit permission and implement strong data
protection measures. For example, a developer might use data anonymization or privacy-preserving
techniques to train models, ensuring that personal identifiers and sensitive information are removed
before data processing.

Security involves protecting LLM-integrated systems and their data from unauthorized access and
cyber threats. In practice, setting up LLM-specific red teams (or teams that test defenses by
simulating attacks) can help safeguard AI systems against potential breaches.

Inclusivity involves the deliberate effort to include diverse voices and perspectives in the
development process of LLMs, ensuring the technology is accessible and beneficial to a broad
spectrum of users. In practice, it is vital to collaborate with socio-technical subject-matter experts who
can guide appropriate actions to promote and preserve inclusion.

This set of principles is not comprehensive but may help to form a conceptual
foundation for ethical LLM development and adoption with the universal goal of
advancing the technology in ways that avoid harm.

Additionally, various leading authorities have published guidance regarding
responsible AI, inclusive of ethical implications. These include the US
Department of Commerce’s National Institute of Standards and

Technology (NIST), Stanford University’s Institute for Human-Centered

Artificial Intelligence (HAI), and the Distributed AI Research Institute

(DAIR), to name a few.

Investigating and minimizing bias in generative

LLMs and generative image models

Bias in generative AI models, including both LLMs and generative image
models, is a complex issue that requires careful investigation and mitigation
strategies. Bias can manifest as unintended stereotypes, inaccuracies, and
exclusions in the generated outputs, often stemming from biased datasets and
model architectures. Recognizing and addressing these biases is crucial to
creating equitable and trustworthy AI systems.



At its core, algorithmic or model bias refers to systematic errors that lead to
preferential treatment or unfair outcomes for certain groups. In generative AI,
this can appear as gender, racial, or socioeconomic biases in outputs, often
mirroring societal stereotypes. For example, an LLM may produce content that
reinforces these biases, reflecting the historical and societal biases present in
its training data.

Let us again revisit our hypothetical fashion retailer, StyleSprint. Consider a
situation where StyleSprint experimented with using a multimodal generative
LLM model to generate promotional images and captions for its latest sneaker
line. It finds that the model predominantly generates sneakers in urban,
graffiti-laden backgrounds, unintentionally drawing an association that relies
on stereotypes. Moreover, the team begins noticing that the captions are also
laden with language that perpetuates stereotypes. This realization prompts a
reevaluation of the imagery and text, first with an investigation of how the
problem surfaced.

Investigating bias involves various techniques, from analyzing the diversity and
representativeness of training datasets to implementing testing protocols that
specifically look for biased outputs across different demographics and
scenarios. Statistical analysis can reveal disparities in model outcomes, while
comparative studies and user feedback can help identify biases in the
generated content.

In this case, let us assume that StyleSprint was using an LLM-provider without
the ability to influence its training data or development process. To mitigate the
risk of bias, the team might employ the following:

Post-processing adjustments to diversify the imagery, ensuring a broader representation of
backgrounds that resonate with its customer base

The institution of a manual review process, enlisting team members to scrutinize and curate AI-
generated images and captions before publishing (i.e., “human-in-the-loop”), ensuring that every
piece of content aligns with the brand’s commitment to diversity and inclusion

As is true for other kinds of evaluation of generative AI, evaluating bias
demands both quantitative and qualitative methods. Statistical analysis can
uncover performance disparities across groups, and comparative studies can
detect biases in outputs. Gathering feedback from diverse users aids the
understanding of real-world bias impacts, while independent audits and
research are essential for identifying issues that internal evaluations may miss.



With a better understanding of how we might investigate and evaluate model
outcomes for societal bias, we can explore technical methods for guiding model
outcomes toward reliability, equity, and general trustworthiness to curb biased
or inequitable outcomes during inference.

Constrained generation and eliciting trustworthy

outcomes

In practice, it is possible to constrain model generation and guide outcomes
toward factuality and equitable outcomes. As discussed, guiding models toward
trustworthy outcomes can be done through continued training and fine-tuning,
or during inference. For example, methodologies such as reinforcement

learning from human feedback (RLHF) and direct preference

optimization (DPO) increasingly refine model outputs to align model
outcomes with human judgment. Additionally, as discussed in Chapter 7,
various grounding techniques help to ensure that model outputs reflect verified
data, continuously guiding the model toward responsible and accurate content
generation.

Constrained generation with fine-tuning

Refinement strategies such as RLHF integrate human judgments into the model
training process, steering the AI toward behavior that aligns with ethical and
truthful standards. By incorporating human feedback loops, RLHF ensures that
the AI’s outputs meet technical accuracy and societal norms.

Similarly, DPO refines model outputs based on explicit human preferences,
providing precise control to ensure outcomes adhere to ethical standards and
human values. This technique exemplifies the shift toward more ethically
aligned content generation by directly incorporating human values into the
optimization process.

Constrained generation through prompt

engineering

As we discovered in Chapter 7, we can guide model responses by grounding the
LLM with factual information. This can be achieved directly using the context



window or retrieval approach (e.g., Retrieval Augmented Generation (RAG)).
Just as we can apply these methods to induce factual responses, we can apply
the same technique to guide the model toward equitable and inclusive
outcomes.

For example, consider an online news outlet looking to use an LLM to review
article content for grammar and readability. The model does an excellent job of
reviewing and revising its drafts. However, during peer review, it realizes some
of the language is culturally insensitive or lacks inclusivity. As discussed,
qualitative evaluation and human oversight are critical to ensuring that model
output aligns with human judgment. Notwithstanding, the writing team can
guide the model toward alignment with company values using a set of general
guidelines for inclusive and debiased language. For example, it could ground
the model with excerpts from its internal policy documents or content from its
unconscious bias training guides.

Employing methodologies such as RLHF and DPO, alongside grounding
techniques, ensures that LLMs generate content that is not only factual but
also ethically aligned, demonstrating the potential of generative AI to adhere to
high standards of truthfulness and inclusivity. Although we cannot
underestimate or deemphasize the importance of human judgment in shaping
model outputs, we can apply practical supplemental methods such as
grounding to reduce the likelihood of harmful or biased model outputs.

In the next section, we’ll explore the risks and ethical dilemmas posed by
attempts to circumvent the constraints we have just discussed, highlighting the
ongoing challenge of balancing the rapid adoption of generative LLMs with
appropriate safeguards against misuse.

Understanding jailbreaking and harmful

behaviors

In the context of generative LLMs, the term jailbreaking describes techniques
and strategies that intend to manipulate models to override any ethical
safeguards or content restrictions, thereby enabling the generation of
restricted or harmful content. Jailbreaking exploits models through
sophisticated adversarial prompting that can induce unexpected or harmful
responses. For example, an attacker might try to instruct an LLM to explain



how to generate explicit content or express discriminatory views.
Understanding this susceptibility is crucial for developers and stakeholders to
safeguard applied generative AI against misuse and minimize potential harm.

These jailbreaking attacks exploit the fact that LLMs are trained to interpret
and respond to instructions. Despite sophisticated efforts to defend against
misuse, attackers can take advantage of the complex and expansive knowledge
embedded in LLMs to find gaps in their safety precautions. In particular,
models that have been trained on uncurated datasets are the most susceptible,
as the universe of possible outputs that the models sample from can include
harmful and toxic content. Moreover, LLMs are multilingual and can accept
various encodings as input. For example, an encoding such as base64, which
can be used to translate plain text into binary format, could be applied to
obfuscate a harmful instruction. In this case, safety filters may perform
inconsistently, failing to detect some languages or alternative inputs.

Despite this inherent weakness in LLMs, developers and practitioners can take
several practical steps to mitigate jailbreaking risks. Remember, these cannot
be exhaustive as new adversarial techniques are often uncovered:

Preprocessing and safety filtering: Implement robust content filtering to detect and block unsafe
semantic patterns across languages and input types. For example, a firm might apply machine
learning techniques to analyze prompts for adversarial patterns and block suspicious inputs before
passing them to the LLM.

Postprocessing and output screening: Apply a specialized classifier or other sophisticated
technique to screen LLM outputs for inappropriate content before returning them.

Safety-focused fine-tuning: Provide additional safety-focused fine-tuning to the LLM to reinforce
and expand its safety knowledge. Focus on known jailbreaking tactics.

Monitoring and iterating: Actively monitor for jailbreaking or policy violation attempts in
production, analyze them to identify gaps, and continually update defense measures to stay ahead of
creative attackers.

While eliminating all possible jailbreaking attempts is infeasible, a multi-
layered defense and operational best practices can significantly mitigate the
risk.

In the next section, we will apply a real-time defense mechanism for
jailbreaking, all while reducing the likelihood of biased and harmful output.



Practice project: Minimizing harmful behaviors

with filtering

For this project, we will use response filtering to try to minimize misuse and
curb unwanted LLM output. Again, we’ll consider our hypothetical business,
StyleSprint. After successfully using an LLM to generate product descriptions
and fine-tuning it to answer FAQs, StyleSprint now wants to attempt to use a
general-purpose LLM (without fine-tuning) to refine its website search.
However, giving its customers direct access to the LLM poses the risk of
misuse. Bad actors may attempt to use the LLM search to produce harmful
content with the intention of harming StyleSprint’s reputation. To prevent this
behavior, we can revisit our RAG implementation from Chapter 7, applying a
filter that evaluates whether queries deviate from the appropriate use.

Reusing our previous implementation from the last chapter (found in the
GitHub repository: https://github.com/PacktPublishing/Generative-AI-
Foundations-in-Python), which applied RAG to answer specific product-related
questions, we can evaluate how the model would respond to questions outside
the desired scope. Recall that RAG is simply a vector search engine combined
with an LLM to produce coherent and more precise responses, contextualized
by a specific data source. We will directly reuse that implementation and the
same product data for simplicity, but this time, we’ll input a completely
unrelated query instead of asking about products:

 

# random query 

response = query_engine.query("describe a giraffe") 

print(response)  

=> A giraffe is a tall mammal with a long neck, distinctive spotted coat, and long 

legs. They are known for their unique appearance and are the tallest land animals in 

the world.

As we can see, the model did not attempt to constrain its answer to the
contents of the search index. It returned an answer based on its vast training.
This is precisely the behavior we want to avoid. Imagine that a bad actor
induced the model to produce explicit content or some other unwanted output.
Moreover, consider a sophisticated attacker that could induce the model to leak
training data or expose sensitive information accidentally memorized during
training procedures (Carlini et al., 2018; Hu et al., 2022). In either case,
StyleSprint could face material risk and exposure.

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python


To prevent this, we can leverage a filter to constrain the output to provide
answers relevant to a given question explicitly. The implementation is already
built into the LlamaIndex RAG interface. It is a feature they call Structured
Answer Filtering:



With structured_answer_filtering set to True, our refine module is able to

filter out any input nodes that are not relevant to the question being asked.

This is particularly useful for RAG-based Q&A systems that involve

retrieving chunks of text from external vector store for a given user query.

(LlamaIndex)

In short, this functionality gives us fine-grained control to restrict the context
we provide to the LLM for synthesis, ensuring that only the most relevant
results are included. Filtering out irrelevant content before synthesizing
responses ensures that only information related to the user’s question is used.
This approach helps avoid answers that are off-topic or outside the intended
subject matter. We can quickly reimplement our RAG approach, applying minor
changes that enable the feature.

NOTE

This functionality is most reliable when using an LLM that can support function calling.

Let’s see how this functionality can be implemented.
 

from llama_index.core import get_response_synthesizer 

from llama_index.core.retrievers import VectorIndexRetriever 

from llama_index.core.query_engine import RetrieverQueryEngine 

# Configure retriever 

retriever = VectorIndexRetriever(index=index,similarity_top_k=1) 

# Configure response synthesizer 

response_synthesizer = get_response_synthesizer( 

    structured_answer_filtering=True, 

    response_mode="refine" 

) 

# Assemble query engine 

safe_query_engine = RetrieverQueryEngine( 

    retriever=retriever, 

    response_synthesizer=response_synthesizer 

) 

# Execute query and evaluate response 

print(safe_query_engine.query("describe a summer dress with price")) 

# => A lightweight summer dress with a vibrant floral print, perfect for sunny days, 

priced at 59.99. 

print(safe_query_engine.query("describe a horse")) 

# => Empty Response

Using this approach, the model returns a response to the standard question but
no response to the irrelevant question. In fact, we can take this further and
compound this filtering with additional instructions in the prompt template. For
example, if we revise response_synthesizer, we can promote a stricter response
from the LLM:

 

QA_PROMPT_TMPL = ( 



    "Context information is below.\n" 

    "---------------------\n" 

    "{context_str}\n" 

    "---------------------\n" 

    "Given only the context information and no prior knowledge, " 

    "answer the query.\n" 

    "Query: {query_str}\n" 

    "Answer: " 

    "Otherwise, state: I cannot answer." 

) 

STRICT_QA_PROMPT = PromptTemplate( 

    QA_PROMPT_TMPL, prompt_type=PromptType.QUESTION_ANSWER 

) 

# Configure response synthesizer 

response_synthesizer = get_response_synthesizer( 

    structured_answer_filtering=True, 

    response_mode="refine", 

    text_qa_template=STRICT_QA_PROMPT 

)

This time, the model responded explicitly, I cannot answer. Using a prompt
template, StyleSprint could return a message it deems appropriate in response
to inputs unrelated to the search index and, as a side effect, ignore queries that
do not adhere to its policies. Although not entirely a perfect solution, combining
RAG with more strict answer filtering can help deter or defend against harmful
instructions or adversarial prompting. Additionally, as explored in Chapter 7,
we can apply RAG-specific evaluation techniques such as RAGAS to measure
factual consistency and answer relevancy.

Summary

In this section, we recognized the increasing prominence of generative AI and
explored the ethical considerations that should steer its progress. We outlined
key concepts such as transparency, fairness, accountability, respect for privacy,
informed consent, security, and inclusivity, which are essential to the
responsible development and use of these technologies.

We reviewed strategies to attempt to counter these biases, including human-
aligned training techniques and practical application-level measures against
susceptibilities such as jailbreaking. In sum, we explored a multidimensional
and human-centered approach to generative AI adoption.

Having completed our foundational exploration of generative AI, we can now
reflect on our journey. We began by laying the groundwork, examining
foundational generative architectures such as generative adversarial networks
(GANs), diffusion models, and transformers.



Chapters 2 and 3 guided us through the evolution of language models, with a
particular focus on autoregressive transformers. We explored how these
models have significantly advanced the capabilities of generative AI, pushing
the boundaries of machine understanding and the generation of human-like
language.

Chapter 4 provided us with practical experience in production-ready
environments. In Chapter 5, we explored the fine-tuning of LLMs for specific
tasks, a technique that enhances their performance and adaptability to specific
applications. Chapter 6 focused on the concept of domain adaptation,
demonstrating how tailoring AI models to understand domain-specific nuances
can greatly improve their utility in specialized fields such as finance, law, and
healthcare.

Chapters 7 and 8 centered on prompt engineering and constrained generation,
addressing techniques to ensure that AI-generated content remains trustworthy
and aligned with ethical guidelines.

This book has aimed to provide a solid foundation in generative AI, preparing
professionals across disciplines and sectors with the necessary theoretical
knowledge and practical skills to effectively engage with this transformative
technology. The potential of generative AI is significant, and with our deeper
understanding of its technologies, coupled with a thoughtful approach to
ethical and societal considerations, we are ready to responsibly leverage its
advantages.
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